This PFI: Accelerating Innovation Research (AIR) Technology Translation (TT) project focuses on translating a research discovery on the use of perforated corrugated steel decks as sheathing to fill the need for non-combustible high-performance shear walls for mid-rise light-framed buildings. Mid- and low-rise buildings comprise the majority of buildings in the United States. The mid-rise multi-family homes (4-9 stories) are becoming the housing trend to meet the increasing demands of population growth and urbanization. The use of cold-formed steel (CFS) would be highly cost-effective for mid-rise light-framed buildings. However the existing shear wall technologies impede the use of CFS in mid-rises due to the requirements of non-combustibility and high structural performance (shear strength, stiffness, ductility). The project will result in a prototype of the proposed non-combustible high-performance steel shear wall technology. This new technology has the following unique features: a) it uses the perforation in the sheathing as energy dissipating fuses to achieve high ductility; b) it uses the corrugation in the sheathing to achieve high strength and stiffness; c) it uses only CFS members; d) the sheathing to framing connection method is optimized for high efficiency; e) it has the same thickness as the non-shear walls; and f) it enables the engineers to control the damage locations to be away from critical building components. These features provide the following advantages over the current state-of-the-art technologies: higher structural performance, lower overall cost, non-combustibility, and controllable failure mechanism when compared to the leading competing technologies, namely the wood based panel shear wall, the steel sheet shear wall, the steel-gypsum composite panel shear wall, and the diagonal steel strap bracing shear wall in the mid-rise construction market.

This project addresses the following technology gaps as it translates from research discovery toward commercial application. It will investigate the feasibility of positioning the corrugated deck within the CFS frame in order to form standard wall thicknesses while maintaining high structural performances. A major research effort will be made to maximize the shear wall performance by developing optimal parameters in perforation, corrugation, and CFS framing details via numerical simulations and full-scale experiments. In addition, personnel involved in this project, undergraduate and graduate students, will receive innovation and technology translation experiences through modeling, building, and testing CFS shear walls. The potential economic impact is expected to be significant for the mid-rise construction industry, which will contribute to the U.S. competitiveness in building industries.

The project involves research collaboration between the University of North Texas and two industrial partners, Verco Decking Inc. and Nucor Building Systems. The industrial partners will provide deck manufacturing capacities, assist in developing an efficient connection method, and guide commercialization aspects in this technology translation effort.

Agency
National Science Foundation (NSF)
Institute
Division of Industrial Innovation and Partnerships (IIP)
Type
Standard Grant (Standard)
Application #
1445065
Program Officer
Barbara H. Kenny
Project Start
Project End
Budget Start
2014-08-15
Budget End
2017-01-31
Support Year
Fiscal Year
2014
Total Cost
$257,521
Indirect Cost
Name
University of North Texas
Department
Type
DUNS #
City
Denton
State
TX
Country
United States
Zip Code
76203