The broader impact/commercial potential of this Small Business Technology Transfer (STTR) Phase II project is to make significant contributions to the future of thermal environmental conditioning in buildings throughout the world. The connected, low power, wearable personal comfort systems can provide relief for the thermally-underserved of America's workforce (who are disproportionately female or part of the aging population), thereby improving their workplace wellbeing, satisfaction, and productivity. The personal comfort system could increase worker productivity by 2-3%, unlocking $17B economic output that is currently lost due to thermal discomfort in the United States, and could reduce the cost of space heating/cooling buildings by 20-30% when integrated into smart building systems. As roughly 10% of the world's energy is spent heating and cooling the interiors of commercial buildings, this technology can make an impactful contribution to the preservation of our planet and the wellbeing of future generations.

The proposed project will support the development and demonstration of a connected, low-power wearable personal comfort system that provides personalized thermal comfort to building occupants. Americans spend over 90% of their time indoors, buildings are responsible for about 40% of our total energy consumption, and yet over 40% of people in office buildings are dissatisfied with their thermal environments. The proposed project has the potential to correct this imbalance, improving occupant comfort and productivity while reducing the energy consumed by buildings. In Phase I, we demonstrated a connected, wearable personal comfort system that can improve the perceived environmental temperature by over +/-6 degF using only 1-2 W of power. In order to harness this enormous technological potential, this Phase II R&D will address remaining technical challenges around ergonomics and thermal management, intensively validate the efficacy of the devices in a laboratory setting, and culminate in deploying this technology in smart buildings and quantifying the effect on both the building and the building occupants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Project Start
Project End
Budget Start
2018-09-15
Budget End
2023-02-28
Support Year
Fiscal Year
2018
Total Cost
$1,449,993
Indirect Cost
Name
Embr Labs Inc.
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02129