The broader impact of this Small Business Innovation Research (SBIR) Phase II project is to advance quantum technologies. Currently, the construction of larger quantum computers, measured by the number of quantum bits or qubits, is hampered by the many wired connections that must connect between the cryogenically-cooled circuits and room-temperature electronics. This project will advance a method to simultaneously boost the weak signals from many quantum bits (qubits) at the same time, and therefore reduce hardware complexity and size. This product will help increase the density of hardware, enabling more powerful quantum computers that will drive new breakthroughs in science, drug development, materials, machine learning capabilities for disease diagnostics, weather predictions, and algorithms for the efficient direction of resources.

This Small Business Innovation Research (SBIR) Phase II project will advance the development of amplifiers for quantum computers. Quantum computers require quantum noise-limited amplifiers for efficient operation, but such devices are not commercially available due to the difficulty in fabrication and lack of universal solutions. This project will develop specialized amplifiers that can be fabricated in commercial foundries for deployment at scale. The technology uses an innovative arrangement of superconducting elements to form a novel amplifier. This process will be tolerant to manufacturing variations to enable production at scale.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Project Start
Project End
Budget Start
2021-01-01
Budget End
2022-12-31
Support Year
Fiscal Year
2020
Total Cost
$965,773
Indirect Cost
Name
Millimeter Wave Systems, LLC
Department
Type
DUNS #
City
Amherst
State
MA
Country
United States
Zip Code
01002