The broader impact/commercial impact of this Small Business Innovation Research (SBIR) Phase I project includes improved food security, environmental benefits, and human health benefits. This project will develop a meat alternative that more closely mimics the taste and texture of animal meat. The technology developed from the proposed project will be used to build a vertically integrated food manufacturing platform that can withstand supply chain disruptions from natural disasters and pandemics. These meat alternatives will reduce and replace traditional meat consumption, with many environmental benefits - lowered greenhouse gas emissions and aquatic pollution; lower use of energy, water and land; and reduced antibiotics usage. There are benefits to human health for reduced meat consumption. Furthermore, production costs will be eventually be comparable to that of mushroom farming.

The proposed project aims to develop a fermentation-based meat alternative that more closely mimics the taste and texture of animal meal through recombinant protein technologies. Additionally, the project aims to leverage the texture and flavor of mushroom mycelia, and supplement this with recombinant muscle proteins to further enhance the taste and nutritional profiles and overcome many of the shortcomings of existing plant-based meat products. To date the concept of combining recombinant muscle protein and single cell protein is novel and has not been reported. Large gaps persist between plant-based and lab-grown meat, with regards to cost and consumer experience. Plant-based meat is more affordable but faces consumer resistance due to sub-optimal texture and nutritional profiles, while cultivated meat offers a consumer experience similar to that of animal meat but at a much higher cost. Towards this goal, muscle protein genes will be expressed in a microbial host and enzymatically cross-linked with vegetable protein to produce protein fibers that can be formulated into synthetic meat. The technical objectives also include demonstration the feasibility of crosslinking muscle fiber proteins extracted from meat with mycoprotein from mushroom to produce desired textural and flavor properties.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Project Start
Project End
Budget Start
2021-02-15
Budget End
2022-01-31
Support Year
Fiscal Year
2020
Total Cost
$256,000
Indirect Cost
Name
Fybraworks Foods Inc.
Department
Type
DUNS #
City
Minneapolis
State
MN
Country
United States
Zip Code
55435