In this Cyberlearning: Transforming Education EXP project, the PIs focus on designing classrooms as collaborative workspaces and learning how such learning environments can foster learning well. They are addressing these issues in high school mathematics classrooms. Learners view videos and read textbooks as homework to begin to learn new content and to deepen their understanding of material already covered. The classroom is "flipped"; rather than the teacher lecturing, the teacher plays the role of mentor and facilitator as learners work in the classroom at making sense of what they've read or heard, applying what they are learning, and deepening their understanding and capabilities. The hard work of learning is thus done along their peers as collaborators and the teacher available as a mentor. Based on cognitive and socio-cognitive theories of learning, the PIs have designed an ensemble of strategies and technological tools for promoting learning in such an environment. The tools include video for story telling in support of reflection, electronic pen-and-ink, and intelligent-tutoring type systems, but the innovation is in the integration of these tools into an ensemble. Research addresses how such an ensemble of technologies can foster deeply absorbing and effective learning experiences and important dynamics associated with learning when collaborative workspaces are in place in formal classrooms.

Many educators and educational theorists are experimenting with the idea of "flipped classrooms," where learners read or view video lectures outside of class and spend classroom time working on problems together or working on projects, in effect, using classroom time for making sense together of what is being learned, applying what is being learned, deepening understanding, and mastering capabilities. While such an approach holds promise for promoting engagement and learning, little systematic research has been done about how, exactly, to design such learning environments to best promote deep and engaged learning. The PIs in this project address that issue, focusing specifically on students learning high school mathematics.

Project Start
Project End
Budget Start
2013-10-01
Budget End
2016-09-30
Support Year
Fiscal Year
2013
Total Cost
$100,000
Indirect Cost
Name
Boulder Language Technologies
Department
Type
DUNS #
City
Boulder
State
CO
Country
United States
Zip Code
80301