Asthma is a common lung disease with acute and chronic manifestations that impacts more than 22.2 million Americans or 7.9% of the population, including over 6.7 million children younger than 18 years of age. The cost of asthma is significant both for individuals and for the society as a whole. It is highly desirable to establish transformative technologies to improve the patient quality of life and reduce the cost of asthma management. The recent development in sensor and mobile computing technology provide great opportunities to establish Smart Asthma Management (SAM) systems and achieve a quantum leap in asthma management. Leveraging on the fast development of information infrastructure, patients can create a detailed temporal log recording their symptoms, medicine usage, and possibly vital physiological signals through an easy access to a website or their smart phones in SAM systems. This unprecedented continuous stream of patient-generated data in SAM systems provides us significant opportunities to better estimate patient condition and make clinical intervention decisions. However, since the information infrastructure of SAM has not become available until recently, very limited work is available for SAM systems. Against this background, this collaborative project aims to develop a suite of statistical modeling, monitoring, prognosis, and clinical intervention decision making methodologies based on a flexible yet rigorous multistate model to describe the evolving of patient conditions. The true underlying state of the patient is assumed unknown; however, there is reason to expect that it could be inferred from patient generated data such as the frequency of the rescue inhaler usage (the time and frequency of the rescue inhaler use is an important indicator of asthma control).

Some anticipated advances include: (i) Multistate model with event intensity function as observations. The proposed methodology brings the mixed effect model and the multistate model into a unified framework to integrate the population information embedded in the historical records of multiple patients and the individual information collected in real-time in a quantitative way. (ii) Stochastic filtering approach for individual patient condition modeling and updating. The novel state space formulation enables efficient stochastic filtering algorithms to estimate and update the states and parameters in the multistate model. (iii) Clinical intervention decision support for patients and clinicians. The salient features of the proposed policy are that it is based on a condition-based policy and incorporates uncertainties in the patient condition model through a Partially Observable Markov Decision Process (POMDP) framework which has been widely used and proven to be very effective in the management of industrial systems. Plans are in place to evaluate the effectiveness of the resulting technologies in collaboration with clinical experts.

The project is likely to contribute predictive technologies that could help reduce the cost and improve the quality of healthcare in the US, especially as it relates to effective management of chronic illnessess. Additional broader impacts of the project include enhanced research-based training opportunities for graduate and undergraduate students (including members of under-represented minorities) in healthcare engineering, statistics, and operation research; enrichment of the curricula in health systems in industrial engineering and operations research at the University of Wisconsin-Madison and the University of Iowa.

Agency
National Science Foundation (NSF)
Institute
Division of Information and Intelligent Systems (IIS)
Type
Standard Grant (Standard)
Application #
1343974
Program Officer
Sylvia Spengler
Project Start
Project End
Budget Start
2014-01-01
Budget End
2018-12-31
Support Year
Fiscal Year
2013
Total Cost
$200,521
Indirect Cost
Name
University of Iowa
Department
Type
DUNS #
City
Iowa City
State
IA
Country
United States
Zip Code
52242