In addition to being the essential fabric of the world's fashion industry, textiles are important components for automotive, aeronautical, architectural, and defense applications. Yet textile prototyping and design (whether for garments, upholstery or composite materials) is an arduous and expensive process. This research project seeks to understand and advance the role of new additive manufacturing technologies (commonly referred to as "3D printing") in the design and prototyping of textile products. The PIs' goal is to develop 3D printing hardware and computer software that enable engineers to prototype textile designs more quickly and economically, and with greater control over a broad gamut of mechanical, optical, and electrical characteristics such as aerodynamic drag, adhesion, heat regulation, friction, elasticity, porosity, density, electrical conductivity, and visual appearance. Beyond individual textiles, project outcomes will support the fabrication of complete products that do not require considerable stitching and assembly, and which may include curved shapes too difficult to cut from flat panels and/or complex composite assemblies too costly to fabricate via traditional methods. To achieve these objectives, the PIs will develop: a library of highly-optimized textile "units" that can be combined using a new language of textile functionality to form a vast array of possible textiles; computer optimization software that enables precise control of textile properties; a computer program that allows users to visually and interactively design complex textile products; and a specialized 3D Printer that is able to precisely fabricate textiles involving multiple materials.

Technically speaking, this project will create the first complete hardware/software pipeline for digital design and fabrication of textiles using multi-material 3D printing. The first fundamental step in this pipeline is constructing parameterized meta-material templates that provide users with high-level knobs for tuning the behavior and large-scale properties of a textile. Next, the ability to interactively simulate the behavior of a virtual textile will be achieved by combining continuum homogenization and data-driven methods; the PIs will develop an interactive design tool that employs first order sensitivity analysis tied to the physical simulation, to enable designers to navigate the huge space of possible designs at both the micro and macro levels. A new language for functionally specifying textile designs that employs a reducer-tuner model will allow engineers and designers to specify meta-materials in terms of desired behavior and performance, enabling designs with guarantees on their characteristics and compliance with standards. Printing volumes for current 3D printers are limited; however, by incorporating computational textile folding into the pipeline, the PIs' system will be able to print very large designs in much smaller folded configurations. Solution of the folding problem will involve nonlinear, non-convex, optimization with unilateral contact constraints. Finally, textiles and garments will be printed using both off-the-shelf 3D printers and a novel low-cost, high-resolution, modular 3D printing platform that is capable of printing with up to 12 different materials that vary in mechanical and appearance properties. In addition to photopolymer materials, the PIs plan to extend hardware capabilities to 3D print structures using co-polymers and solvent-based materials. More information about this project is available online at http://textiles.csail.mit.edu/

Agency
National Science Foundation (NSF)
Institute
Division of Information and Intelligent Systems (IIS)
Type
Standard Grant (Standard)
Application #
1409286
Program Officer
Ephraim Glinert
Project Start
Project End
Budget Start
2014-08-01
Budget End
2018-07-31
Support Year
Fiscal Year
2014
Total Cost
$515,899
Indirect Cost
Name
Columbia University
Department
Type
DUNS #
City
New York
State
NY
Country
United States
Zip Code
10027