Recent research in Human-Computer Interaction (HCI) generated a broad range of interaction styles that move beyond the desktop into new physical and social contexts. These emerging interaction styles, that are often referred to as Reality-based Interfaces (RBIs), leverage users' developmental abilities such as naive physics, spatial, social and motor skills, and offer concrete ways to think about abstract phenomena. Building on this work and motivated by the need of our nation to further engage children in STEM, this research investigates how to design age-appropriate reality-based interfaces that engage young children in scientific investigations, bio-design, and engineering. The project entails the development of novel human-computer interfaces that encourage children to explore and design within the domain of biological engineering, while facilitating learning of abstract concepts in a concrete way. This approach intends to promote a re-examination of the early childhood STEM curriculum to include emerging and interdisciplinary topics.
The project scope includes the design, implementation, and evaluation of RBIs for young children that support collaborative exploration of biological engineering. The research questions investigated focus on how reality-based interaction techniques can be applied to make the invisible tangible. Specifically, how to design novel interaction techniques that bridge the time and size scales of biology? How to design and implement interfaces that supports collaboration within both pairs and larger groups by integrating computational devices of different scales? How to support seamless transition between macroscopic and microscopic levels of information and across multiple devices? And finally, can RBIs allow young children to grasp abstract concepts that were previously considered too complex for their age and developmental stage? The outcomes of this project contribute to four areas of research: 1) tangible and embodied interaction, 2) computer supported collaborative learning, 3) interaction design for children, and 4) early childhood education in STEM.