This Research Experiences for Undergraduates (REU) Site award funds a new site focused on the creation of visual computing systems at the School of Arts, Media and Engineering at Arizona State University. The REU Site will recruit eight students each summer for a ten-week long experience in computational imaging and mixed-reality research. From augmented and virtual reality to computational photography and the Internet of Things, applications built on real-time, high-quality visual sensing are becoming central to everyday computing. All of these applications exhibit two competing demands: complex, domain-specific sensing capabilities on one hand and systems considerations such as energy efficiency, data bandwidth, and latency on the other. This REU site aims to enable students to conduct research on the design of new visual computing systems for these applications to solve these challenges. Further, students will be exposed to the emerging area of media arts and sciences to understand how the systems they build can be utilized for visual media creation. Students will have the opportunity to present their work in both scientific publications and conferences as well as novel dissemination through public exhibition, outreach to the local community, and engagement with a wider audience interested in visual media. Undergraduate students will be recruited from a broad range of fields including computer science, electrical engineering, and digital media arts and sciences. Recruitment efforts will focus on students from state universities, minority-serving institutions, and community colleges, particularly from under-served populations who are interested in visual media technologies. This will enable new, diverse audiences to be exposed to visual computing research and its applications in society.

The primary objective of this REU site is to train undergraduate researchers in the areas of computational imaging and photography, virtual/augmented/mixed reality, and visualization technologies. These students will work on projects that addresses research questions such as: (a) How can the physics of light and sound transport be incorporated/exploited into acquisition systems effectively? (b) What are the signal processing constraints for sampling high-dimensional visual data effectively? (c) How can we characterize the energy, performance, and scalability of efficient system architectures and algorithms for the sensing, distribution, and playback of high-quality immersive spatial data? As part of these projects, hardware and software co-design will be emphasized to realize mobile and embedded systems which are energy-efficient and extend the visual capabilities of sensing and processing. The second objective is to have students' engagement with the general public through applications demonstrating their research projects. This is primarily accomplished through tools from the media arts and sciences that emphasize real-time demonstrations, public exhibition, digital media content creation, and on-going dialogue about the science and engineering behind these systems. These combined objectives will train undergraduate researchers to build exciting, novel visual computing systems that have wide application to relevant sensor, visualization, gaming, and entertainment industries that utilize this technology.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Agency
National Science Foundation (NSF)
Institute
Division of Information and Intelligent Systems (IIS)
Type
Standard Grant (Standard)
Application #
1950534
Program Officer
Balakrishnan Prabhakaran
Project Start
Project End
Budget Start
2020-08-01
Budget End
2023-07-31
Support Year
Fiscal Year
2019
Total Cost
$324,000
Indirect Cost
Name
Arizona State University
Department
Type
DUNS #
City
Tempe
State
AZ
Country
United States
Zip Code
85281