Completion of this research will describe the fundamental roles for N-glycosylation and its regulation on muscle cell function using a repetitive process blending experimental, statistical, and computational methods. Glycosylation - the process of covalent addition of sugar residues to proteins - is a common modification to proteins involved in cellular communication. Physiological cues regulate the glycosylation process and protein glycosylation impacts electrical and contractile functions of cardiac muscle cells, thereby suggesting a fundamental and dynamic role for glycosylation in muscle cell physiology. The new knowledge gained through this research will be integrated into an interdisciplinary education program at the intersection of experimental and computational muscle cell biology that is aimed at engaging and retaining student scientists, focusing on students/trainees from underrepresented groups. To do so, the following will be developed: 1) A massive open online course on experimental and computational muscle cell biology, 2) Web-based user-friendly myocyte models and analytical algorithms, 3) Initial work on a prototype VR system of myocyte models that enable researchers and students to actively practice, feel, and interact with cellular electromechanical function in real time, and 4) An interactive laboratory experience in cardiovascular physiology for high school students.

Recent data suggest a link among regulated glycosylation, electrical signaling, and myocyte contraction. While mechanisms for this putative link remain elusive due to a lack of appropriate models, here, the responsible cellular mechanisms will be determined using an iterative process that combines established biophysical and biochemical techniques with newly developed glycomic methods, rigorous in-silico modeling, and statistical experimental design on a newly created and more appropriate animal model to describe the functional impact of a changing glycome on cardiomyocyte physiology. The impact and significance of describing such a mechanism are broadened by the fact that the glycosylation machinery among species is highly variable. Thus, the differential glycosylation that exists among organisms likely results in modulated protein function that then predictably alters cellular activities.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Agency
National Science Foundation (NSF)
Institute
Division of Molecular and Cellular Biosciences (MCB)
Type
Standard Grant (Standard)
Application #
1856199
Program Officer
Charles Cunningham
Project Start
Project End
Budget Start
2019-08-01
Budget End
2023-07-31
Support Year
Fiscal Year
2018
Total Cost
$773,970
Indirect Cost
Name
Wright State University
Department
Type
DUNS #
City
Dayton
State
OH
Country
United States
Zip Code
45435