Diatoms are a class of unicellular phytoplankton that account for ~40% of total marine primary productivity in the modern ocean. Since downward fluxes of biogenic silica and organic matter in the modern ocean derive largely from diatom productivity, there is increased interest in the mechanistic processes that regulate their fate. Indeed, the physiological state and life history of diatom assemblages dictate whether diatom Si and its associated organic C are either recycled in the euphotic zone, or exported to depth, placing mechanistic importance on cellular processes mediating bloom to post-bloom transition in response to nutrient stress. Programmed cell death (PCD) triggered by specific environmental stresses (e.g., Fe starvation, viral infection, high light, oxidative stress, and UV exposure) has now been documented in a variety of prokaryotic and eukaryotic unicellular phytoplankton, including diatoms. It provides a mechanistic framework to help explain lysis rates independent of grazing. The expression and activation of metacaspases, putative death proteases, in stressed diatoms, suggest PCD is an integral pathway in these organisms. Currently, the ecological role(s) of PCD-related genes in unicellular phytoplankton and the evolutionary drivers selecting for their retention remain unknown. Their preservation would seem to provide a negative selection pressure, yet their retention and maintenance suggests some sort of ancient, selective advantage. Metacaspases (and other PCD-related genes) may have co-evolved with other metabolic pathways whereby retention and low-level expression served housekeeping or regulatory functions. Elucidation of the ecological role(s) of PCD-related genes, like metacaspases, in diatom field populations requires an understanding of cellular function(s) and induction under relevant stressors. The premise of this proposal is that a subset of putative, PCD-related genes plays heretofore-unappreciated roles in stress adaptation in marine diatoms. The PIs will investigate whether Fe and N availability differentially regulate their expression and activity in T. pseudonana and in coastal diatoms from the California coast. The researchers will elucidate whether distinct PCD-related genes confer increased fitness under Fe or under N-limitation. This research follows from the investigators previous results that a subset of PCD-related genes is differentially expressed in T. pseudonana cells in response to Fe stress.

Specific hypotheses are: (1) Expression and activity of PCD-related genes are controlled by Fe or N availability; (2) Overexpression of putative PCD-related genes confers increased fitness under nutrient limitation; (3) Diverse T. psuedonana metacaspases share functional epitope similarities; and (4) PCD-related genes in coastal diatoms display differential responses to steady-state Fe and N limitation. This work integrates physiology, biochemistry, genetics, ultra-trace metal clean techniques and field-based sampling in order to elucidate the ecological function of metacaspases in diatoms and to identify their roles and regulation in natural diatom populations under Fe versus N limitation. This novel interdisciplinary approach is particularly suited to address the roles of these fascinating enzymes.

This project will allow for continued professional development of two young PIs and provide an opportunity for a female, postdoctoral associate to get first time PI experience. The proposed project provides a forum for researchers with different educational backgrounds (undergraduate students, graduate students, technician, post-docs, and faculty) to interact and develop. This project provides excellent hands-on training for development of both graduate and undergraduate students and will strongly broaden the participation of women. Proposed research will also foster new national collaborations. Research activities will interface with the Mid-Atlantic Center for Ocean Science Education Excellence (MA-COSEE) and ongoing outreach programs that introduce urban, largely minority, children and families to marine science. The PIs will participate in an ongoing public lecture series at New Jersey's Liberty Science Center entitled "Pulse of the Planet" combined with 2-hour professional development workshop for K-12 teachers. Specific goals are to stimulate awareness of the immense diversity and large-scale importance of marine microbes to ocean function.

Agency
National Science Foundation (NSF)
Institute
Division of Ocean Sciences (OCE)
Type
Standard Grant (Standard)
Application #
0927829
Program Officer
David L. Garrison
Project Start
Project End
Budget Start
2009-09-01
Budget End
2012-08-31
Support Year
Fiscal Year
2009
Total Cost
$707,949
Indirect Cost
Name
Rutgers University
Department
Type
DUNS #
City
New Brunswick
State
NJ
Country
United States
Zip Code
08901