This project will examine the physical processes associated with the evolution (formation, circulation, and destruction) of Eighteen Degree Water (EDW) within the subtropical gyre of the North Atlantic Ocean. EDW is the archetype for the anomalously thick and vertically homogenous mode waters that are typical of all subtropical western boundary current systems. EDW is associated with a shallow overturning circulation that carries heat northward and is an interannual reservoir of anomalous heat, nutrients and CO2. Understanding the annual cycle of EDW evolution, and in particular its associated circulation pathways and destruction mechanisms, is important because though EDW is isolated beneath the stratified upper-ocean at the end of each winter, it may reemerge in subsequent years to influence mixed layer properties and consequently air-sea interaction and primary productivity.

The pathways of EDW circulation, the processes of EDW destruction, and the role of EDW in modulating ocean-atmosphere heat exchange and nutrient supply to the euphotic zone will be investigated. The plan is to synthesize a broad spectrum of observations including a substantial in-situ dataset collected during the recently completed CLIVAR Mode Water Dynamics Experiment (CLIMODE). This coordinated field effort included a large array of profiling floats, a moored array, and several hydrographic surveys. To supplement this unique dataset the investigators will also examine contemporary and historical hydrography, Argo profiling floats, surface drifters, satellite altimetry and ocean color fields, and output from several eddy-resolving OGCM simulations.

Intellectual Merit: This project will test the long-hypothesized climatic importance of EDW as an element of the North Atlantic's shallow overturning circulation and as a short-term reservoir of heat, nutrients, and carbon. Significantly, this study will advance understanding of the various processes that destroy EDW. In addition, this study will, for the first time, compare and contrast the roles of the large-scale, low-frequency circulation and the mesoscale eddy field in EDW dispersal and destruction. Finally, the proposed work will provide a foundation for comparative studies since mode waters are found in every ocean basin.

Broader Impacts: Clarifying the role of EDW in the exchange of heat between the atmosphere and ocean will support ongoing community efforts to improve interannual-to-decadal predictability. For example, EDW and its associated air-sea heat flux may have a direct impact on the year-to-year variability of surface storm amplitude in the North Atlantic storm track near the Gulf Stream. In addition, understanding the role of EDW in the storage and exchange of nutrients will advance our understanding of interannual variability in primary productivity. Rigorous model-data comparisons using the unique CLIMODE dataset will also aid the broader community by providing an objective assessment of the fidelity of eddy-resolving numerical models. Finally, the project will support the training of two postdoctoral investigators and a graduate student.

This project is a contribution to the U.S. CLIVAR (CLImate VARiability and predictability) program.

Agency
National Science Foundation (NSF)
Institute
Division of Ocean Sciences (OCE)
Type
Standard Grant (Standard)
Application #
0960928
Program Officer
Eric C. Itsweire
Project Start
Project End
Budget Start
2010-04-15
Budget End
2014-03-31
Support Year
Fiscal Year
2009
Total Cost
$396,429
Indirect Cost
Name
University of California-San Diego Scripps Inst of Oceanography
Department
Type
DUNS #
City
La Jolla
State
CA
Country
United States
Zip Code
92093