A grand challenge in microbial ecology is to understand what drives the structure of microbial communities. A recently discovered novel class of Proteobacteria, the Zetaproteobacteria, are associated with microbial mats at iron rich hydrothermal vents at submarine volcanoes deep in the ocean. These bacteria only grow using iron as an energy source and fix carbon dioxide. Within iron rich microbial mats, Zetaproteobacteria are the dominant bacterial population; however they are rare in most other deep-sea or marine habitats, suggesting they may be restricted to specific niches characterized by gradients of oxygen and iron. Recent discoveries have expanded their range to fluids collected from deep ocean crust boreholes, iron deposits in coastal saltmarshes, and with steel associated bio-corrosion, demonstrating that marine Zetaproteobacteria are cosmopolitan. A unique property of these marine iron oxidizing bacteria is that they produce morphologically distinct iron oxide structures in the form of filamentous sheaths or stalk-like structures. These structures are easily recognized by light microscopy, and electron microscopy is beginning to reveal subtle differences among them that may be diagnostic of different populations of iron oxidizing bacteria. Another unusual aspect of iron oxidizing bacteria is that they produce large quantities of oxides with relatively little bacterial biomass. As a result, the oxides form a matrix that influences water and nutrient flow in the microbial mats where they grow, and in turn, may influence the growth of other groups of bacteria and archaea that live in the mats. In an ecological context, the PIs believe this makes them a keystone species that form the predominant structural matrix of the mat, and engineer an environment conducive for growth of specific bacterial populations within the mat ecosystem. The PIs propose to use high resolution mat sampling techniques to investigate the architecture of mat ecosystems and couple these with modern molecular methods (i.e., single-cell metagenomics) and geochemical measurements of the vent fluid to couple morphological and functional diversity to phylogenetic and physiological diversity. Because the Zetaproteobacteria are ancient, have unique metabolic and morphological attributes, and appear to be restricted to a well-defined habitat, they offer an interesting model for understanding fundamental ecological concepts that drive microbial diversity and evolution.

Broader Impacts: A better understanding of iron oxidizing bacteria that include Zetaproteobacteria is of fundamental interest to scientists interested in areas of earth science and oceanography because they illustrate how microbes can fundamentally influence geochemical cycling and mineral deposition. Furthermore, morphological structures similar to those produced by Zetaproteobacteria can still be identified hundreds of millions (and possibly billions) of years back in the geological record, making them of paleontological, and potentially of exobiological, interest. As knowledge of extant populations grow, it is possible they will also help to inform us of environmental change in past Earth history. A wealth of educational and outreach opportunities will be made possible by this work, including graduate and postdoctoral education, research experiences for undergraduates, and teacher training. In addition the participating scientists are involved in a number of programs to make the general public aware of the process of how scientific research is conducted, and how discoveries of a fundamental nature can ultimately benefit humankind.

Agency
National Science Foundation (NSF)
Institute
Division of Ocean Sciences (OCE)
Type
Standard Grant (Standard)
Application #
1155756
Program Officer
Daniel J. Thornhill
Project Start
Project End
Budget Start
2012-07-01
Budget End
2017-12-31
Support Year
Fiscal Year
2011
Total Cost
$639,846
Indirect Cost
Name
Western Washington University
Department
Type
DUNS #
City
Bellingham
State
WA
Country
United States
Zip Code
98225