Nitrogen is a limiting nutrient over most of the surface ocean. Fixed nitrogen (N) such as nitrate controls absorption of atmospheric carbon dioxide and production of organic matter by marine plants and algae. Nitrogen availability, use patterns, and biological community structure in the surface ocean help determine the amount of organic matter passed onto higher organisms. Nitrogen availability also controls how much organic matter sinks into deep waters. This project will reconstruct past sources of nitrogen, use patterns, and trophic structures in surface waters of the Gulf of California, equatorial Pacific, and Sargasso Sea. The tool employed by the principal investigators from Texas A&M University in Corpus Christi and University of Massachusetts Dartmouth is nitrogen isotope ratios of individual amino acids. The investigators will measure isotope ratios in sinking particle samples collected by sediment traps such as those used by the Ocean Flux Program in the Sargasso Sea. This study will train graduate students in stable isotope biogeochemistry and oceanography. This project will also provide research funds for students in the McNair program. McNair students come from underrepresented and economically challenged backgrounds to pursue degrees in STEM fields at Texas A&M University Corpus Christi, a Hispanic and Minority Serving Institution. Data from this project will be made available to the public through the Biological and Chemical Oceanography-Data Management Office (www.bco-dmo.org).

There is great interest in reconstructing past climate-forced variations in nitrogen sources, their patterns of utilization, and euphotic zone community structure using compound specific N isotope ratios in amino acids liberated from preserved proteinaceous materials in sediments and coral skeletons. However, it has not yet been verified whether 1) the nitrogen isotope ratios of individual amino acids produced in the euphotic zone are transported with fidelity by sinking particles to deep-sea corals and sediments and 2) the nitrogen isotope ratios of individual amino acids liberated from sedimentary organic matter have been altered by diagenesis. Through analysis of sediment trap material collected over time, this project seeks to verify that nitrogen isotope ratios in individual amino acids reflect the 1) overall spatial contrast in N sources, utilization patterns, and trophic structures among the Gulf of California, equatorial Pacific, and Sargasso Sea and 2) temporal variations in nitrogen sources, utilization patterns, and trophic structures within both the Gulf of California and equatorial Pacific due to seasonal upwelling and/or El Nino-Southern Oscillation. This study will also test if the nitrogen isotope ratios of total hydrolysable amino acids in sedimentary organic matter from the three locations retain the unaltered nitrogen isotope patterns carried by sinking particles. This project will, for the first time, compare nitrogen stable isotope ratios in amino acids collected from sediment trap samples with surficial sediments from deep-sea oxic sites to verify whether total hydrolysable amino acids in deep-sea sediments preserve unaltered nitrogen isotope signals produced in overlying euphotic zone, which can provide insights on addressing diagenetic alteration of bulk N isotope ratios that have hindered paleo-nitrogen cycle reconstruction.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Agency
National Science Foundation (NSF)
Institute
Division of Ocean Sciences (OCE)
Type
Standard Grant (Standard)
Application #
1829947
Program Officer
Henrietta Edmonds
Project Start
Project End
Budget Start
2018-09-01
Budget End
2021-08-31
Support Year
Fiscal Year
2018
Total Cost
$375,085
Indirect Cost
Name
Texas A&M University Corpus Christi
Department
Type
DUNS #
City
Corpus Christi
State
TX
Country
United States
Zip Code
78412