This award funds the research activities of Professors Maria C. Gonzalez-Garcia, Christopher P. Herzog, Patrick Meade, Leonardo Rastelli, Martin Rocek, Robert Shrock, Warren Siegel and George Sterman at Stony Brook University.

Physics is constantly evolving as new techniques and capabilities are developed to understand the natural world. This award supports research in a broad but deeply related set of topics in Theoretical Physics, and engagement at each of these frontiers of knowledge serves the national interest by advancing fundamental scientific progress in the United States. Investigations will include the analysis of high-energy collisions of elementary particles, which probe the fundamental laws upon which the material universe is based, and proposals for new experiments involving elementary particles and atomic nuclei. These subjects are closely related to the deep mysteries of gravity, space and time, and the possibility that all of the known forces in nature are related, possibly unifying gravity itself with the forces that are seen in electrical phenomena, in radioactivity, and in nuclear physics. The theoretical methods developed in particle and nuclear physics have also been found to have exciting applications to chemical compounds and metals with unusual properties, like superconductivity. New theoretical methods, sometimes relying on modern computational capabilities, are making possible reliable predictions for the properties of solids and liquids that were previously thought intractable. This research, by advancing our knowledge of the laws of nature and by contributing to a better understanding of the physical universe, including practical materials, has significant broader impacts and implications for our world view. Indeed, many of the topics under study by the senior participants are frequently discussed in the media, including the Higgs boson, black holes, the role of neutrinos in the Universe, string theory, the quark-gluon plasma, and quantum entanglement. The research carried out under this award will also serve in the training of graduate students and mentoring of postdoctoral fellows at the highest levels. The faculty on this proposal conduct their research with graduate students, and share their experience and expertise with undergraduates and community members, in and beyond the classroom. Individual members will also continue their own outreach activities, which have included successful traditions in high-school research mentoring and in the organization of science playwriting competitions.

At the technical level, this award will support research over a wide range of theoretical physics, largely based on quantum field theory and string theory. Recent years have seen a strengthening engagement of theory and experiment in particle physics, with new and exciting data from the Large Hadron Collider, from neutrino observatories and cosmic ray satellites. These new sources of information concerning our universe enable theorists to test long-standing ideas against evolving data, and to develop new theoretical methods to guide experiment. At the same time, novel applications of quantum field and string theory, such as applications of duality and the conformal bootstrap, have been developed in and beyond particle physics, opening unexpected avenues of research into nuclear physics, condensed matter physics, and quantum information, sometimes with applications in pure mathematics. As active participants in these historic developments, the senior personnel of this award will continue and develop their work in high energy collider phenomenology, quantum chromodynamics, in neutrino and astroparticle physics, in applications of gauge-gravity duality, conformal field theory, extensions of the Standard Model, electroweak symmetry breaking, superstrings, and the geometry of supersymmetric gauge theories. This research will also help train a new generation of theorists at the postdoctoral and graduate levels.

Agency
National Science Foundation (NSF)
Institute
Division of Physics (PHY)
Application #
1620628
Program Officer
Keith Dienes
Project Start
Project End
Budget Start
2016-09-01
Budget End
2019-08-31
Support Year
Fiscal Year
2016
Total Cost
$1,950,000
Indirect Cost
Name
State University New York Stony Brook
Department
Type
DUNS #
City
Stony Brook
State
NY
Country
United States
Zip Code
11794