This award in the Research Advanced by Interdisciplinary Science and Engineering (RAISE) on Transformational Advances in Quantum Systems (TAQS) program supports collaborative work by Professors Michael Raymer, Andrew Marcus and Brian Smith at the University of Oregon to demonstrate experimentally improved performance in the sensing of remote objects and the spectroscopy of electronically coupled molecules using quantum mechanical states of light. Advancements in nonlinear optical spectroscopy and metrology that rely on intrinsically quantum mechanical effects are of broad scientific interest to the chemistry, physics and engineering communities. The methods and research so developed will create new opportunities that may be utilized in the expanding interdisciplinary field of quantum information science. The supported research will facilitate the dissemination of results at international meetings and workshops, and the tools developed will be made readily available to the scientific community. The three PIs will collaborate on all aspects of the proposed work, and will co-advise the PhD students working on the projects. The students involved will thus enjoy a unique and broad exposure to research training that spans quantum optics, ultrafast molecular spectroscopy, and biophysics.

An interdisciplinary team spanning chemistry, physics, and engineering in the Oregon Center for Optical, Molecular, and Quantum Science, will carry out experiments to demonstrate that Einstein-Podolsky-Rosen (EPR)-like entanglement of photons in the time-frequency domain can provide a significant quantum advantage in spectroscopy and metrology. Time-frequency entangled photon pairs (EPP) are tightly correlated in time while being anti-correlated in frequency, such that the sum of the energies of the photon pair is sharply defined. Such quantum states of light offer the ability to circumvent classical Fourier time-bandwidth limits when employing photon coincidence events, either in detection, as in standard quantum optics, or in two-photon excitation of molecular complexes, as in nonlinear spectroscopy. The research will investigate potential quantum advantages in the context of four related optical schemes in metrology and nonlinear spectroscopy: 1) Quantum illumination (sensing of an object's presence or absence); 2) Multi-parameter estimation of complementary parameters (e.g., estimating the distance and velocity of a reflecting object); 3) Two-photon interferometric nonlinear spectroscopy; and 4) Entangled photon-pair 2D fluorescence spectroscopy. The commonality that unifies the four schemes is the use of broad-band (multi-spectral-mode), time-frequency EPP produced by spontaneous parametric down-conversion (SPDC), coupled with interferometer configurations that exploit quantum interference.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Agency
National Science Foundation (NSF)
Institute
Division of Physics (PHY)
Type
Standard Grant (Standard)
Application #
1839216
Program Officer
Julio Gea-Banacloche
Project Start
Project End
Budget Start
2018-09-15
Budget End
2021-08-31
Support Year
Fiscal Year
2018
Total Cost
$1,087,119
Indirect Cost
Name
University of Oregon Eugene
Department
Type
DUNS #
City
Eugene
State
OR
Country
United States
Zip Code
97403