The ability to predict and control the outcome of chemical reactions is essential for many areas of modern physics, chemistry and biology. This ability requires detailed knowledge of how individual atoms in molecules move to break, form, or rearrange chemical bonds between them during the reaction. This research project aims at obtaining high-resolution movies of such atomic motion. Since the atoms involved in chemical reactions move extremely fast, typically on a time scale of few tens of femtoseconds (one femtosecond is one millionth of a billionth of a second), ultrashort, femtosecond laser pulses are the only experimental tools capable of recording such movies in real time. However, because of the quantum nature of atoms and molecules, the outcome of any molecular reaction is not deterministic: even if one measurement precisely captures the positions of all atoms at a given time, the same measurement will have different outcomes if repeated several times, even under exactly identical conditions. The acquisition of a high-power laser system delivering a hundred thousand pulses (each shorter than 10 femtoseconds) per second will enable repeating such measurements millions of times, which is needed for the creation of a quantum-mechanical molecular movie. Each frame of a movie then reflects the probability of every possible configuration of atoms at different stages of the reaction, instead of a fixed picture of a molecule. Such movies will advance our understanding of fundamental chemical processes and provide input for applications in areas of national priority, ranging from efficient energy conversion and storage to synthesis of novel materials, drug design and molecular electronics. This project is jointly funded by the Major Research Instrumentation program and the Established Program to Stimulate Competitive Research (EPSCoR).

Within this project, a broad range of photochemical processes, including photodissociation and isomerization, charge transfer reactions and formation of van der Waals clusters, will be studied. For each of these processes, the main scientific goal is to image the time-dependent molecular geometry and simultaneously characterize the evolving electronic structure of the molecule. This will be achieved by employing several complementary time-resolved techniques, including photoelectron spectroscopy and ion momentum imaging, inner-shell and laser-induced photoelectron diffraction, as well as ion beam techniques and Fourier-transform spectroscopy for characterization of the neutral fragments. For all these techniques, the key technical aspect facilitating simultaneous characterization of electronic and nuclear degrees of freedom will be the coincident detection of several reaction products, enabled by the high repetition rate of the acquired laser. At the same time, its high average power of several hundred watts will enable the efficient conversion of the emitted near-infrared radiation to a broad range of different wavelengths (from long-wavelength infrared to extreme ultraviolet and soft x-rays) needed for initiating and probing the reactions to be studied.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Agency
National Science Foundation (NSF)
Institute
Division of Physics (PHY)
Type
Standard Grant (Standard)
Application #
2019150
Program Officer
John D. Gillaspy
Project Start
Project End
Budget Start
2020-09-01
Budget End
2022-08-31
Support Year
Fiscal Year
2020
Total Cost
$1,156,700
Indirect Cost
Name
Kansas State University
Department
Type
DUNS #
City
Manhattan
State
KS
Country
United States
Zip Code
66506