Arctic ecosystems are both tightly linked to the earth arctic systems (land, ocean, and atmosphere) and are highly sensitive to the effects of global warming and climate change. Recent studies indicate that the most significant rise in temperature resulting from increased greenhouse gases is anticipated to occur within the Arctic. Because the land, sea, and atmospheric systems are inextricably linked, it is important to assess this interaction within the context of global change and the resultant impacts of such change. The potential for amplification of resultant impacts, based on multiple positive feedbacks between these systems, will be relevant at regional as well as global scales.

The three scientific goals that address the intellectual merit of the proposed research are to (1) Estimate the historic and future impacts of variability within the ocean and atmospheric systems on terrestrial fluxes of gaseous (including CO2 and water vapor) and non-gaseous (particulate and dissolved organic matter, nutrients, and water) materials and energy between the land and the atmosphere and sea; (2) Evaluate the impacts of variation in radiation, climate, ocean circulation, ocean temperature, and sea ice position and extent on terrestrial processes, including those that have feedback on atmospheric and ocean processes; and (3) Provide high-resolution products (atmospheric, ice, ocean, and terrestrial) and related datasets, relevant to the patterns and controls of terrestrial and oceanic processes, for use in future analyses.

The methods for reaching these goals are (A) Use of the regional atmospheric model, Polar MM5, to produce high-resolution atmospheric data for the North Slope of Alaska; (B) Determination and utilization of carbon flux rates and meteorological states from a Sky Arrow aircraft and eddy covariance tower network to obtain regional estimates of carbon balance, and to verify regional modeling; (C) Use of satellite monitoring to quantify spatial patterns and temporal variability of Arctic vegetation structure, productivity, and landscape freeze-thaw state using AVHRR and MODIS; (D) Utilize Biome-BGC and RHESSys ecosystem model simulations of terrestrial carbon and hydrological to conduct detailed site simulations of daily carbon, water, and nitrogen budgets at a range of spatial scales and extents within the study domain; (E) Utilize a high-resolution, regionally coupled ice-ocean model to assess sea ice extent and oceanic processes; and (F) Utilize a physically-based, spatially-distributed hydrologic model to assess hydrologic processes at the watershed scale, providing information on moisture dynamics within and among landscape units in order to assess integrated hydrologic responses on a watershed scale to be verified against measurements of soil moisture and to examine consequent effects such as groundwater flux, stream discharges, and biogeochemical processes.

The two education/outreach goals address the broader impacts of the research outlined above as follows: (4) Create computer based, static and near-real time displays, that describe the role of the Arctic in further influencing global change, and to specifically address the sensitivity of the Arctic to global change. These computer-based displays will be interactive and will be strategically placed in areas relevant to local natives, arctic tourists, and K-12 students in Barrow and San Diego County. The displays will integrate discussions of arctic global change studies in association with other regions currently involved in global change research; and (5) Develop materials for use in K-8 classrooms in Barrow, elsewhere on the North Slope, and on the "outside". These materials will help students understand the importance of arctic systems in global change.

Agency
National Science Foundation (NSF)
Institute
Division of Polar Programs (PLR)
Application #
0436177
Program Officer
Neil R. Swanberg
Project Start
Project End
Budget Start
2004-09-15
Budget End
2008-08-31
Support Year
Fiscal Year
2004
Total Cost
$1,600,000
Indirect Cost
Name
San Diego State University Foundation
Department
Type
DUNS #
City
San Diego
State
CA
Country
United States
Zip Code
92182