This award supports a project to measure the elemental and isotopic composition of firn air and occluded air in shallow boreholes and ice cores from the WAIS Divide site, the location of a deep ice-coring program planned for 2006-07 and subsequent seasons. The three primary objectives are: 1) to establish the nature of firn air movement and trapping at the site to aid interpretations of gas data from the deep core; 2) to expand the suite of atmospheric trace gas species that can be measured in ice and replicate existing records of other species; and 3) to inter-calibrate all collaborating labs to insure that compositional and isotopic data sets are inter-comparable. The program will be initiated with a shallow drilling program during the 05/06 field season which will recover two 300+m cores and firn air samples. The ice core and firn air will provide more than 700 years of atmospheric history that will be used to address a number of important questions related to atmospheric change over this time period. The research team consists of six US laboratories that also plan to participate in the deep core program. This collaborative research program has a number of advantages. First, the scientists will be able to coordinate sample allocation a priori to maximize the resolution and overlap of records of interrelated species. Second, sample registration will be exact, allowing direct comparison of all records. Third, a coherent data set will be produced at the same time and all PI.s will participate in interpreting and publishing the results. This will insure that the best possible understanding of gas records at the WAIS Divide site will be achieved, and that all work necessary to interpret the deep core is conducted in a timely fashion. The collaborative structure created by the proposal will encourage sharing of techniques, equipment, and ideas between the laboratories. The research will identify impacts of various industrial/agricultural activities and help to distinguish them from natural variations, and will include species for which there are no long records of anthropogenic impact. The work will also help to predict future atmospheric loadings. The project will contribute to training scientists at several levels, including seven undergraduates, two graduate students and one post doctoral fellow.

Agency
National Science Foundation (NSF)
Institute
Division of Polar Programs (PLR)
Application #
0440498
Program Officer
Julie Palais
Project Start
Project End
Budget Start
2005-06-01
Budget End
2008-05-31
Support Year
Fiscal Year
2004
Total Cost
$197,181
Indirect Cost
Name
University of Colorado at Boulder
Department
Type
DUNS #
City
Boulder
State
CO
Country
United States
Zip Code
80309