The large subglacial Lake Vostok in Antarctica is unique ecological site with a novel microbial biota. The temperatures, pressures and lack of light all select for organisms that may not exist anywhere else on Earth. The accretion ice (lake water frozen to the bottom of the lower surface of the glacier) has preserved microbial samples from each region of Lake Vostok as the glacier passes over and into the lake. Thus, without contaminating the lake with microorganisms from the surface, microbes originating from the lake can be collected, transported to the laboratory and studied. Two of the deepest ice cores sections in this project are part of the international allocation. The will be shared between four researchers (Sergey Bulat from Russia, Jean-Robert Petit and Daniel Prieur from France, Scott Rogers from USA). The United States team will study, isolate, and characterize bacteria, fungi, and viruses that have been sampled from the lake through the process of ice accretion to the lower surface of 3500+m thick glacier overriding the lake. The project will involve a suite of methods, including molecular, morphological, and cultural. This includes observation and description by fluorescence, light, and electron microscopy, isolation on thirteen separate cultural media, polymerase chain reaction amplification, DNA sequencing, and phylogenetic analyses. Eleven accretion ice core sections, as well as two glacial ice core sections. As well as two glacial ice core sections will be studied. The accretion ice core sections, as well as two glacial ice core sections will be studied. The accretion ice core sections represent all of the major regions of the lake that have been sampled by the accretion process in the vicinity of the Vostok 5G ice core. The broader impacts of the work relate to the impact the results will have on the filed. These long=isolated lakes, deep below the Antarctic ice sheet may contain novel uniquely adapted organisms. Glacial ice contains an enormous diversity of entrapped microbes, some of which may be metabolically active in the ice. The microbes from Lake Vostok are of special interest, since they are adapted to cold, dark, and high pressure. Thus, their enzyme systems and biochemical pathways may be significantly different from those in the microbes that are the subject of current studies. As such, these organisms may form compounds that may have useful applications. Also, study of the accretion ice, and eventually the water, from Lake Vostok will provide a basis for the study of other subglacial lakes. Additionally, study of the microbes in the accretion ice will be useful to those planning to study analogous systems on ice-covered planets and moons.

Agency
National Science Foundation (NSF)
Institute
Division of Polar Programs (PLR)
Type
Standard Grant (Standard)
Application #
0536870
Program Officer
Roberta L. Marinelli
Project Start
Project End
Budget Start
2005-07-15
Budget End
2008-06-30
Support Year
Fiscal Year
2005
Total Cost
$155,443
Indirect Cost
Name
Bowling Green State University
Department
Type
DUNS #
City
Bowling Green
State
OH
Country
United States
Zip Code
43403