The Antarctic Peninsula region exhibits one of the largest warming trends in the world. Climate change in this region will reduce the duration of winter sea-ice cover, altering both the pelagic ecosystem and bentho-pelagic coupling. We postulate that shelf benthic ecosystems are highly suitable for tracking climate change because they act as "low-pass" filters, removing high-frequency seasonal noise and responding to longer-term trends in pelagic ecosystem structure and export production. We propose to conduct a 3-year study of bentho-pelagic coupling along a latitudinal climate gradient on the Antarctic Peninsula to explore the potential impacts of climate change (e.g., reduction in sea-ice duration) on Antarctic shelf ecosystems. We will conduct three cruises during summer and winter regimes along a 5- station transect from Smith Island to Marguerite Bay, evaluating a broad range of benthic ecological and biogeochemical processes. Specifically, we will examine the feeding strategies of benthic deposit feeders along this climatic gradient to elucidate the potential response of this major trophic group to climatic warming. In addition, we will (1) quantify carbon and nitrogen cycling and burial at the seafloor and (2) document changes in megafaunal, macrofaunal, and microbial community structure along this latitudinal gradient. We expect to develop predictive insights into the response of Antarctic shelf ecosystems to some of the effects of climate warming (e.g., a reduction in winter sea-ice duration). The proposed research will considerably broaden the ecological and carbon-flux measurements made as parts of the Palmer Station LTER and GLOBEC programs by providing a complementary benthic component. This project also will promote science education from the 9th grade to graduate-student levels. We will partner with the NSF-sponsored Southeastern Center for Ocean Science Education Excellence to reach students of all races in all areas of NC, SC and GA. The project will also benefit students at the post secondary level by supporting three graduate and two undergraduate students. During each of the three field excursions, NCSU and UH students will travel to Chile and Antarctica to participate in scientific research. Lastly, all three PIs will incorporate material from this project into their undergraduate and graduate courses.