This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The GBASE project (GeomicroBiology of Antarctic Subglacial Environments) is one of three research components of the WISSARD (Whillans Ice Stream Subglacial Access Research Drilling) integrative initiative that is being funded by the Antarctic Integrated System Science Program of NSF's Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. GBASE will examine distinct, but hydrologically related, subglacial environments using a combination of biogeochemical/ genomic measurements to answer key questions directly relevant to metabolic and phylogenetic biodiversity, and the biogeochemical transformation of major nutrients beneath the Whillans Ice Stream. We expect the microbial communities associated with the ice stream to be a metabolically dynamic ecosystem, and specifically ask (1) what is the microbial community structure and (2) what is the metabolic function of the community in situ? Understanding biogeochemical processes involved with elemental transformations on our planet is a central theme in NSF's decadal plan and the use of multidisciplinary tools to study these transformations in polar regions has been recommended by a 2007 NRC report that states "It is time for scientific research on subglacial lakes to begin". GBASE results will be used by investigators of LISSARD and RAGES (the other two components of the WISSARD project) to cast their results in a holistic ecosystem perspective.
INTELLECTUAL MERIT: The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations.
BROADER IMPACTS: Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars.