9530379 Anderson This research project is part of the US Joint Global Ocean Flux Study (JGOFS) Southern Ocean Program aimed at (1) a better understanding of the fluxes of carbon, both organic and inorganic, in the Southern Ocean, (2) identifying the physical, ecological and biogeochemical factors and processes which regulate the magnitude and variability of these fluxes, and (3) placing these fluxes into the context of the contemporary global carbon cycle. This work is one of forty-four projects that are collaborating in the Southern Ocean Experiment, a three- year effort south of the Antarctic Polar Frontal Zone to track the flow of carbon through its organic and inorganic pathways from the air-ocean interface through the entire water column into the bottom sediment. The experiment will make use of the RVIB Nathaniel B. Palmer and the R/V Thompson. This component is a study of how naturally radioactive material in the ocean sediment may be used to reconstruct the flux of biogenic material through the water column to the sediment, and by inference, the productivity of the surface layers. There is evidence that the current surface conditions of high nutrient levels, but low chlorophyll levels do not extend back into colder climatic epochs, and that an examination of radionuclides may allow the reconstruction of rates of paleoproductivity. Two aspects of the biogeochemical cycling and physical transport of radionuclide tracers in the modern ocean will be investigated. In the first part, the concentration of a series of natural radionuclide tracers (thorium-230, protactinium-231, and Beryllium-10) in the Southern Ocean will be measured for their scavenging behavior both in the water column and in particulate material collected by sediment traps. The goal is to test the proposed use of radionuclide ratios as proxy variables for the export flux. In the second part, the concentration values will be introduced into an ocean general circulat ion model to evaluate the transport of radionuclides by the ocean circulation on scales that are larger than the spatial gradients in particle flux. These combined efforts will better define our ability to use radionuclide ratios to evaluate past changes in ocean productivity, and improve our understanding of the response of ocean productivity to climate variability. ***

Agency
National Science Foundation (NSF)
Institute
Division of Polar Programs (PLR)
Application #
9530379
Program Officer
Bernhard Lettau
Project Start
Project End
Budget Start
1996-08-15
Budget End
2002-07-31
Support Year
Fiscal Year
1995
Total Cost
$532,000
Indirect Cost
Name
Columbia University
Department
Type
DUNS #
City
New York
State
NY
Country
United States
Zip Code
10027