Transforming simple achiral molecules into stereochemically complex molecules remains a central challenge in organic synthesis. Asymmetric metal catalysis provides an avenue to meet this challenge. However, the majority of asymmetric organometallic catalysts mediates one type of reaction and allows one transformation. Therefore, traditionally complex organic molecules are often built transformation by transformation. This process is tedious and expensive. This proposal describes an innovative approach to asymmetric catalysis, asymmetric tandem organocatalysis, which uses one catalyst to mediate multiple transformations. The utility of tandem organocatalysis will be demonstrated in a very concise synthesis of Eiseniachloride A, a molecule of potential great medicinal interest. The completion of this proposed research would show the concept of tandem organocatalysis is valid and superior to the traditional one catalyst-one transformation organometallic catalysis. More importantly, the realization of asymmetric tandem organocatalysis would provide large quantities of potential drug candidates that can not be obtained otherwise.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
5F32GM075711-02
Application #
7112383
Study Section
Special Emphasis Panel (ZRG1-F04A (20))
Program Officer
Marino, Pamela
Project Start
2005-08-01
Project End
2007-03-01
Budget Start
2006-08-01
Budget End
2007-03-01
Support Year
2
Fiscal Year
2006
Total Cost
$29,844
Indirect Cost
Name
California Institute of Technology
Department
Chemistry
Type
Schools of Engineering
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125