Stroke is the third leading cause of death in the United States and the main cause of long-term disability. The risk of stroke increases significantly with age, and the average age of Veterans will continue to increase as Veterans from the Vietnam era continue to age. The overall goals of this project are to develop and characterize novel therapeutic strategies that will improve outcome and reduce long-term disability after stroke. Cerebral ischemia and subsequent reperfusion initiates a cascade of events that can lead to inflammation and secondary neuronal damage resulting in an increased extent of infarct and poorer clinical outcome. The complement system plays a central role in the pathophysiology of ischemic stroke. We propose to investigate the pathogenic, as well as the protective mechanisms of complement that are involved in cerebral injury after stroke, and to develop and characterize novel complement inhibitory strategies for reducing secondary tissue injury and improving cognitive and long-term functional recovery. The proposed studies are focused on the characterization of targeted complement inhibitors in pre-clinical murine models of stroke. We have demonstrated the significant benefits of targeted versus systemic complement inhibition in models of CNS injury, including ischemic stroke, and here we propose to characterize second-generation targeted complement inhibitors that target to injured brain tissue after ischemia. Our targeting strategy consists of linking different types of complement inhibitor to single chain antibody (scFv) targeting moieties. We will characterize different targeting specificities and different types of complement inhibitor in two different models of stroke, and determine short-term and long-term therapeutic outcome in terms of tissue injury, tissue repair and regeneration, and cognitive and functional recovery.
In aim 1, we will characterize the recombinant proteins in a mouse model of middle cerebral artery occlusion (MCAO). This is a well characterized model and will allow comparisons with previous and archived data. We will investigate the post-reperfusion treatment window, and the temporal expression of different neoepitopes on the ischemic brain (which may indicate different targeting strategies, depending on when inhibitor is administered after stroke). We will additionally explore stress/injury neoepitopes that are more selective for brain endothelial cells in an attempt to identify additional targets for delivery of therapeutics.
In aim 2, we will use the same MCAO model to investigate the effect of the different recombinant proteins in long-term outcome, in terms of tissue injury and repair, cognitive function and functional recovery. These studies will also address the dual role of complement in injury and repair/neuroregeneration.
In aim 3, we will characterize the most promising candidate inhibitors in a model of microembolic stroke. The microembolic model allows more control over clot burden, perfusion impairment and neurological deficit. A focus here will be cognitive and functional evaluation and long-term recovery. The model also allows evaluation of spontaneous and therapeutic dissolution of clots in combination with complement inhibitory therapy. This will provide important pre-clinical data since the only currently approved treatment for ischemic stroke is tissue plasminogen activator (tPA).

Public Health Relevance

Stroke is the third leading cause of death in the United States and the main cause of long-term disability. The risk of stroke increases significantly with age, and the average age of Veterans continues to increase. Furthermore, the proportions of Veterans who are older than 65 will continue to increase as Veterans from the Vietnam era continue to age. Studies proposed investigate injury and repair mechanisms after stroke using clinically relevant pharmacologic agents (complement inhibitors) as investigative tools. The work is expected to elucidate mechanisms of injury and recovery after stroke, and to directly lead to the development of a therapeutic agent that will improve long-term cognitive and functional recovery after stroke.

Agency
National Institute of Health (NIH)
Institute
Veterans Affairs (VA)
Type
Non-HHS Research Projects (I01)
Project #
1I01RX001141-01A1
Application #
8675357
Study Section
Brain Injury: TBI & Stroke (RRD1)
Project Start
2014-04-01
Project End
2018-03-31
Budget Start
2014-04-01
Budget End
2018-03-31
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Ralph H Johnson VA Medical Center
Department
Type
DUNS #
039807318
City
Charleston
State
SC
Country
United States
Zip Code
29401
Alawieh, Ali; Langley, E Farris; Weber, Shannon et al. (2018) Identifying the role of complement in triggering neuroinflammation after traumatic brain injury. J Neurosci :
Schnabolk, Gloriane; Parsons, Nathaniel; Obert, Elisabeth et al. (2018) Delivery of CR2-fH Using AAV Vector Therapy as Treatment Strategy in the Mouse Model of Choroidal Neovascularization. Mol Ther Methods Clin Dev 9:1-11
Alawieh, Ali; Andersen, Meredith; Adkins, DeAnna L et al. (2018) Acute Complement Inhibition Potentiates Neurorehabilitation and Enhances tPA-Mediated Neuroprotection. J Neurosci 38:6527-6545
Alawieh, Ali; Langley, E Farris; Tomlinson, Stephen (2018) Targeted complement inhibition salvages stressed neurons and inhibits neuroinflammation after stroke in mice. Sci Transl Med 10:
Tomlinson, Stephen; Thurman, Joshua M (2018) Tissue-targeted complement therapeutics. Mol Immunol 102:120-128
Richard Albert, Julien; Koike, Tasuku; Younesy, Hamid et al. (2018) Development and application of an integrated allele-specific pipeline for methylomic and epigenomic analysis (MEA). BMC Genomics 19:463
Zhu, Peng; Bailey, Stefanie R; Lei, Biao et al. (2017) Targeted Complement Inhibition Protects Vascularized Composite Allografts From Acute Graft Injury and Prolongs Graft Survival When Combined With Subtherapeutic Cyclosporine A Therapy. Transplantation 101:e75-e85
Alawieh, Ali; Tomlinson, Stephen; Adkins, DeAnna et al. (2017) Preclinical and Clinical Evidence on Ipsilateral Corticospinal Projections: Implication for Motor Recovery. Transl Stroke Res 8:529-540
Marshall, Keely; Jin, Junfei; Atkinson, Carl et al. (2017) Natural immunoglobulin M initiates an inflammatory response important for both hepatic ischemia reperfusion injury and regeneration in mice. Hepatology :
Holers, V Michael; Tomlinson, Stephen; Kulik, Liudmila et al. (2016) New therapeutic and diagnostic opportunities for injured tissue-specific targeting of complement inhibitors and imaging modalities. Semin Immunol 28:260-7

Showing the most recent 10 out of 19 publications