This application will provide training for Dr. Steven Bark in the neurobiology and neurochemistry of peptide neurotransmission using analytical and chemical technologies. With Dr. Bark's extensive experience in analytical and protein chemistry, this K01 training will focus on the neuroscience of peptides for neurotransmission. This training will occur under the mentorship of Dr. Vivian Hook, a noted researcher in protease processing in neurological systems. Dr. Hook's laboratory is in the Skaggs School of Pharmacy and Pharmaceutical Sciences at the University of California at San Diego. This institution and nearby allied institutions provide extraordinary opportunities for seminars, courses and collaborative interactions in all areas of Neuroscience. This training in peptide mechanisms of neurotransmission will enhance Dr. Bark's capabilities to identify and answer important questions about regulation of the nervous system in health and human disease as an independent research scientist. Enkephalin and beta-endorphin are opioid neuropeptides that have been implicated in adverse neurological disease conditions for mental state, chronic pain, drug and alcohol abuse, behavior, anxiety, and depression. The biosynthesis of these opioid peptides requires proteolytic processing of precursor proteins. Secretory vesicle Cathepsin L has recently been discovered as a new and significant protease pathway for production of enkephalins and beta-endorphin in vivo. These new findings indicate a distinct cysteine protease pathway, in addition to the well known subtilisin-like Prohormone Convertases 1 and 2 for production of neuropeptides. It is now important to define the role of Cathepsin L in producing these opioid neuropeptides. Therefore, the objective of this proposal is to define the protease mechanisms mediated by Cathepsin L for producing enkephalin and beta-endorphin.
In Specific Aim 1, we will establish the identification and levels of enkephalin, beta-endorphin and their processing intermediates by coexpression of Cathepsin L and proenkephalin or proopiomelanocortin in PC12 cells. We will also optimize current mass spectrometry (MS) approaches for qualitative and quantitative analysis of neuropeptides.
In Specific Aim 2, we will extend these experiments to evaluate Cathepsin L knockout mice for altered proteolysis of neuropeptides and precursor-derived intermediates that lead to production of enkephalin and beta-endorphin in vivo.
In Specific Aim 3, we will define the changes in these neurotransmitters and their processing intermediates after stimulated secretion or activation in PC12 and primary chromaffin cells in culture. These mass spectrometry experiments will provide (1) significant advances for definitive identification and quantitation of neuropeptides and (2) use this critical information for defining proteolytic mechanisms for the biosynthesis of active enkephalin and beta-endorphin in health and in neurological disease conditions.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Scientist Development Award - Research & Training (K01)
Project #
7K01DA023065-06
Application #
8552301
Study Section
Human Development Research Subcommittee (NIDA)
Program Officer
Purohit, Vishnudutt
Project Start
2008-04-01
Project End
2013-12-31
Budget Start
2012-09-01
Budget End
2013-12-31
Support Year
6
Fiscal Year
2012
Total Cost
$106,102
Indirect Cost
$7,859
Name
University of Houston
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
036837920
City
Houston
State
TX
Country
United States
Zip Code
77204
Hook, Vivian; Funkelstein, Lydiane; Wegrzyn, Jill et al. (2012) Cysteine Cathepsins in the secretory vesicle produce active peptides: Cathepsin L generates peptide neurotransmitters and cathepsin B produces beta-amyloid of Alzheimer's disease. Biochim Biophys Acta 1824:89-104
Bark, Steven J; Wegrzyn, Jill; Taupenot, Laurent et al. (2012) The protein architecture of human secretory vesicles reveals differential regulation of signaling molecule secretion by protein kinases. PLoS One 7:e41134
Kim, Yoona; Bark, Steven; Hook, Vivian et al. (2011) NeuroPedia: neuropeptide database and spectral library. Bioinformatics 27:2772-3
Gupta, Nitin; Bark, Steven J; Lu, Weiya D et al. (2010) Mass spectrometry-based neuropeptidomics of secretory vesicles from human adrenal medullary pheochromocytoma reveals novel peptide products of prohormone processing. J Proteome Res 9:5065-75
Wegrzyn, Jill L; Bark, Steven J; Funkelstein, Lydiane et al. (2010) Proteomics of dense core secretory vesicles reveal distinct protein categories for secretion of neuroeffectors for cell-cell communication. J Proteome Res 9:5002-24
Bark, Steven J; Lu, Weiya D; Hook, Vivian (2009) Linear and accurate quantitation of proenkephalin-derived peptides by isotopic labeling with internal standards and mass spectrometry. Anal Biochem 389:18-26
Lortie, Mark; Bark, Steven; Blantz, Roland et al. (2009) Detecting low-abundance vasoactive peptides in plasma: progress toward absolute quantitation using nano liquid chromatography-mass spectrometry. Anal Biochem 394:164-70