An increasing amount of direct and indirect evidence indicates that ethanol markedly decreases both cellular and plasma Mg2+ content through mechanisms which are poorly understood. The goal of the present project is to characterize, at the cellular and subcellular level, how the acute and chronic administration of ethanol impairs Mg2+ homeostasis in liver cells, and possibly cardiac myocytes, to induce a decrease in total cellular Mg2+. This decrease is the result of a prolonged and massive intake of ethanol, and is deleterious to tissues. Hence, the characterization of the mechanisms responsible for this depletion would permit to operate preventively, to reduce the insurgence of alcohol-related pathologies such as cirrhosis and alcoholic cardiomyopathy. The preliminary data reported here indicate that the acute perfusion of livers with varying doses of ethanol induces a detectable and selective loss of Mg2+ from liver cells through a specific Mg2+ extrusion mechanism, tentatively identifiable with a Na+/Mg2+ exchanger. The Mg2+ extrusion is prevented by the alcohol dehydrogenase inhibitor 4-methyl-pyrazole, by amiloride, or by the removal of external Na+. There are four principal aims: 1.) To investigate whether, by mobilizing Mg2+ from different tissues, the acute administration of ethanol to anesthetized rats induces a rapid and transient increase in serum Mg2+ level. 2.) To determine the mechanisms responsible for the specific extrusion of Mg2+ across the cell plasma membrane following acute administration of ethanol. 3.) To investigate whether ethanol-induced Mg2+ extrusion affects only the cytosolic compartment or results in a major redistribution of Mg2+ among cytosol and intracellular compartments, and 4.) To determine to what extent Mg2+ transport and regulatory mechanisms are affected following chronic ethanol treatment.
These Aims will be investigated in perfused livers and hearts, isolated cells and purified subcellular organelles obtained from organs acutely treated with ethanol, or isolated from ethanol-fed rats. The results so obtained will provide a critical and necessary background of knowledge for future more mechanistic studies aimed at correlating Mg2+ deficiency with impairment of body or organ functions.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Research Project (R01)
Project #
5R01AA011593-05
Application #
6533581
Study Section
Special Emphasis Panel (ZRG4-ALTX-4 (01))
Program Officer
Brown, Ricardo A
Project Start
1998-09-09
Project End
2003-08-31
Budget Start
2002-09-01
Budget End
2003-08-31
Support Year
5
Fiscal Year
2002
Total Cost
$124,363
Indirect Cost
Name
Case Western Reserve University
Department
Physiology
Type
Schools of Medicine
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Romani, Andrea M P (2015) Effect of acute and prolonged alcohol administration on Mg(2+) homeostasis in cardiac cells. Alcohol 49:265-73
Voma, Chesinta; Etwebi, Zienab; Soltani, Danial Amir et al. (2014) Low Hepatic Mg(2+) Content promotes Liver dysmetabolism: Implications for the Metabolic Syndrome. J Metab Syndr 3:
Voma, Chesinta; Barfell, Andrew; Croniger, Colleen et al. (2014) Reduced cellular Mg²? content enhances hexose 6-phosphate dehydrogenase activity and expression in HepG2 and HL-60 cells. Arch Biochem Biophys 548:11-9
Long, Samantha; Romani, Andrea Mp (2014) Role of Cellular Magnesium in Human Diseases. Austin J Nutr Food Sci 2:
Nguyen, Huy; Romani, Andrea (2014) Effect of Alcohol Administration on Mg(2+) Homeostasis in H9C2 Cells. J Cardiovasc Dis Diagn 2:179
Jacobs-Harper, Amy; Crumbly, Ashlee; Romani, Andrea (2013) Acute effect of ethanol on hepatic reticular G6Pase and Ca2+ pool. Alcohol Clin Exp Res 37 Suppl 1:E40-51
Romani, Andrea M P (2011) Cellular magnesium homeostasis. Arch Biochem Biophys 512:1-23
Barfell, Andrew; Crumbly, Ashlee; Romani, Andrea (2011) Enhanced glucose 6-phosphatase activity in liver of rats exposed to Mg(2+)-deficient diet. Arch Biochem Biophys 509:157-63
Cefaratti, C; Romani, A (2011) Modulation of Na+/Mg²+ exchanger stoichiometry ratio by Cl? ions in basolateral rat liver plasma membrane vesicles. Mol Cell Biochem 351:133-42
Torres, Lisa M; Konopnika, Bocena; Berti-Mattera, Liliana N et al. (2010) Defective translocation of PKCepsilon in EtOH-induced inhibition of Mg2+ accumulation in rat hepatocytes. Alcohol Clin Exp Res 34:1659-69

Showing the most recent 10 out of 14 publications