The Cleveland Clinic Foundation Musculoskeletal Core Center (CCFMCC). In the years since the original RFA for MCCs, musculoskeletal research activities have dramatically increased at CCF by the recruitment of Dr. Joseph Lannotti (an outstanding clinical musculoskeletal researcher) to the Chair of the Department of Orthopaedic Surgery, by the recruitment of Dr. Peter Cavanagh (an outstanding musculoskeletal biomechanics researcher) to the Chair of the Department of Biomedical Engineering, by the creation of the Orthopaedic Research Center in these two Departments, and by the recruitment of 3 new investigators into the Center. This, combined with an already strong musculoskeletal program, now provides a broadly based, interactive and well-funded Research Base for our proposed CCFMCC. Investigators in the Research Base currently are PIs on 14 NIH R01 grants, 9 of them funded by NIAMS. This clearly demonstrates the commitment of the CCF and NIH to this research. The ORC is committed to collaboration in translational research and enrichment programs. An example is the monthly Musculoskeletal Research Seminar Series that extends to Case Western Reserve University, University Hospitals Research Institute and NE Ohio Universities College of Medicine to generate synergistic research in the wider NE Ohio area. We ask, in this proposal, for funds to invite 4 national/international musculoskeletal researchers a year to enrich this already established activity. The CCFMCC would also enrich the research of the Center and CCF with 3 proposed cores: Musculoskeletal Imaging, Musculoskeletal Histology, and Musculoskeletal Robotics and Mechanical Testing, each with highly skilled Directors and Associate Directors. The imaging core was rated outstanding in our first submission and has added significantly to its resources, including microCT capabilities. The expansion of the Research Base has greatly increased the need for histology of soft and mineralized tissues and for in situ hybridization. The histology core would meet this need with high throughput, reproducible methods, particularly for tissue arrays, tissue sections and highly sensitive, non-radioactive in situ hybridization. Dr. Cavanagh has established a robotics system that, with our existing materials testing capabilities, forms the biomechanics core, adding a new and exciting dimension to investigations in the Research Base. An External Advisory Board of 5 outstanding musculoskeletal researchers has been assembled to review the Pilot and Feasibility Projects and for evaluating their progress on a yearly basis. Their stringent review of the 6 Projects prepared from the 13 originally proposed has led to the 2 that are incorporated into this application. In sum, we feel that we have all the necessary attributes to provide a highly competitive application for a MCC that would enhance our research in ways that can make a difference and contribute more significantly to musculoskeletal research.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Center Core Grants (P30)
Project #
7P30AR050953-02
Application #
6890476
Study Section
Special Emphasis Panel (ZAR1-AAA-D (J1))
Program Officer
Panagis, James S
Project Start
2004-04-25
Project End
2009-03-31
Budget Start
2005-04-01
Budget End
2006-03-31
Support Year
2
Fiscal Year
2005
Total Cost
$596,000
Indirect Cost
Name
Cleveland Clinic Lerner
Department
Other Basic Sciences
Type
Schools of Medicine
DUNS #
135781701
City
Cleveland
State
OH
Country
United States
Zip Code
44195
Ghatak, Shibnath; Misra, Suniti; Norris, Russell A et al. (2014) Periostin induces intracellular cross-talk between kinases and hyaluronan in atrioventricular valvulogenesis. J Biol Chem 289:8545-61
Misra, Suniti; Ghatak, Shibnath; Vyas, Alok et al. (2014) Isothiocyanate analogs targeting CD44 receptor as an effective strategy against colon cancer. Med Chem Res 23:3836-3851
Ghatak, Shibnath; Bogatkevich, Galina S; Atnelishvili, Ilia et al. (2014) Overexpression of c-Met and CD44v6 receptors contributes to autocrine TGF-?1 signaling in interstitial lung disease. J Biol Chem 289:7856-72
Chen, Dongxing; Bashur, Lindsay A; Liang, Bojian et al. (2013) The transcriptional co-regulator Jab1 is crucial for chondrocyte differentiation in vivo. J Cell Sci 126:234-43
Colbrunn, Robb W; van den Bogert, Antonie J; Mino, Jeffrey S et al. (2013) Mechanical evaluation of balloon-type gastrostomy devices. J Long Term Eff Med Implants 23:31-7
Misra, Suniti; Ghatak, Shibnath; Patil, Neha et al. (2013) Novel dual cyclooxygenase and lipoxygenase inhibitors targeting hyaluronan-CD44v6 pathway and inducing cytotoxicity in colon cancer cells. Bioorg Med Chem 21:2551-9
Kerr, B A; McCabe, N P; Feng, W et al. (2013) Platelets govern pre-metastatic tumor communication to bone. Oncogene 32:4319-24
Bonsignore, Lindsay A; Colbrunn, Robb W; Tatro, Joscelyn M et al. (2011) Surface contaminants inhibit osseointegration in a novel murine model. Bone 49:923-30
Fening, Stephen D; Mihnovets, Jonathon; Jones, Morgan H et al. (2011) The effect of storage medium tonicity on osteochondral autograft plug diameter. Arthroscopy 27:188-93
Barsoum, Wael K; Lee, Ho H; Murray, Trevor G et al. (2011) Robotic testing of proximal tibio-fibular joint kinematics for measuring instability following total knee arthroplasty. J Orthop Res 29:47-52

Showing the most recent 10 out of 52 publications