Vibrational transitions are sensitive to temperature (frequency shifts and bandwidth changes) so it is proposed to develop transient IR methods to study heat transport in proteins and other structures in aqueous solutions. In particular, the IR spectrum of water is modified by heating which breaks hydrogen bonds and the proposed methods can measure changes of ca. 0.02 C. In recent experiments the changes in temperature arising from the flow of energy from a heme group was studied. The rise times of the heating signal in deoxyhemoglobin (Hb) and deoxymyoglobin (Mb) solutions were studied in detail to investigate the energy transport mechanisms in heme proteins. The kinetics of this increase of transmission is fitted to a model that consists of a fast and a slow component. The fast component is best fitted by a Gaussian rise function with time constants of 7.5 1 1.5 and 8.5 1 1.5 ps for Mb solution and Hb solutions, respectively. The slow component (ca. 20 ps), with 40% of the total amplitude, was attributed to energy transfer from heme to water through the protein via a classical diffusion process based on agreement between the measured time and that calculated with classical diffusion theory. The fast component, almost identical for both Hb and Mb, could not be described by classical diffusion theory and is suggested to proceed through collecti ve motions of the protein. Experiments on myoglobin (Mb) were also performed to investigate the flow of energy from heme after excitation into different electronic states of the heme. Distinct absorption and bleaching features could be ascribed to vibrationally """"""""hot"""""""" heme within the Mb that relaxed with a time constant of 2 to 5 ps.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001348-20
Application #
6480858
Study Section
Project Start
2001-08-01
Project End
2002-07-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
20
Fiscal Year
2001
Total Cost
$155,764
Indirect Cost
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Sheth, Rahul A; Arellano, Ronald S; Uppot, Raul N et al. (2015) Prospective trial with optical molecular imaging for percutaneous interventions in focal hepatic lesions. Radiology 274:917-26
Roussakis, Emmanuel; Spencer, Joel A; Lin, Charles P et al. (2014) Two-photon antenna-core oxygen probe with enhanced performance. Anal Chem 86:5937-45
Courter, Joel R; Abdo, Mohannad; Brown, Stephen P et al. (2014) The design and synthesis of alanine-rich ?-helical peptides constrained by an S,S-tetrazine photochemical trigger: a fragment union approach. J Org Chem 79:759-68
Singh, Prabhat K; Kuroda, Daniel G; Hochstrasser, Robin M (2013) An ion's perspective on the molecular motions of nanoconfined water: a two-dimensional infrared spectroscopy study. J Phys Chem B 117:9775-84
Chuntonov, Lev; Ma, Jianqiang (2013) Quantum process tomography quantifies coherence transfer dynamics in vibrational exciton. J Phys Chem B 117:13631-8
Culik, Robert M; Annavarapu, Srinivas; Nanda, Vikas et al. (2013) Using D-Amino Acids to Delineate the Mechanism of Protein Folding: Application to Trp-cage. Chem Phys 422:
Kuroda, Daniel G; Bauman, Joseph D; Challa, J Reddy et al. (2013) Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase. Nat Chem 5:174-81
Lam, A R; Moran, S D; Preketes, N K et al. (2013) Study of the ?D-crystallin protein using two-dimensional infrared (2DIR) spectroscopy: experiment and simulation. J Phys Chem B 117:15436-43
Kuroda, Daniel G; Singh, Prabhat K; Hochstrasser, Robin M (2013) Differential hydration of tricyanomethanide observed by time resolved vibrational spectroscopy. J Phys Chem B 117:4354-64
Falvo, Cyril; Zhuang, Wei; Kim, Yung Sam et al. (2012) Frequency distribution of the amide-I vibration sorted by residues in amyloid fibrils revealed by 2D-IR measurements and simulations. J Phys Chem B 116:3322-30

Showing the most recent 10 out of 128 publications