This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The increasing prevalence of obesity is driving a surge in the incidence of associated metabolic diseases including insulin resistance, type 2 diabetes mellitus, hyperlipidemia, and non-alcoholic fatty liver disease (NAFLD). Perturbations in lipid homeostasis (secondary to fatty acid oversupply) play a primary role in the pathogenesis of each of these diseases. However, the mechanisms controlling key constituents of fatty acid metabolism remain to be discovered. The peroxisome proliferator-activated receptor (PPAR) coactivator 1 (PGC-1alpha) is a highly inducible coactivator that coordinates the capacity for hepatic mitochondrial fatty acid oxidation, oxidative phosphorylation, and gluconeogenesis via transcriptional activation of multiple targets in these metabolic pathways. PGC-1 plays an important role in both muscle and liver during metabolic maladies such as obesity and diabetes. In muscle, PGC-1 expression is decreased in insulin resistance consistent with inappropriate switching between fat and carbohydrate oxidation. Hepatic fatty acid homeostasis is modulated at the level of gene transcription by a family of nuclear receptor transcription factors, the peroxisome proliferator-activated receptors (PPARs) and their coactivator protein (PGC-1alpha). PGC-1alpha is a highly-inducible coactivator that regulates transcription factors controlling multiple energy metabolic pathways including gluconeogenesis, mitochondrial oxidative phosphorylation, fatty acid catabolism, and triglyceride synthesis and secretion.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR002584-22
Application #
7956978
Study Section
Special Emphasis Panel (ZRG1-SBIB-Q (40))
Project Start
2009-09-01
Project End
2010-08-31
Budget Start
2009-09-01
Budget End
2010-08-31
Support Year
22
Fiscal Year
2009
Total Cost
$17,838
Indirect Cost
Name
University of Texas Sw Medical Center Dallas
Department
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Chiu, Tsuicheng D; Arai, Tatsuya J; Campbell Iii, James et al. (2018) MR-CBCT image-guided system for radiotherapy of orthotopic rat prostate tumors. PLoS One 13:e0198065
Mishkovsky, Mor; Anderson, Brian; Karlsson, Magnus et al. (2017) Measuring glucose cerebral metabolism in the healthy mouse using hyperpolarized 13C magnetic resonance. Sci Rep 7:11719
Moreno, Karlos X; Harrison, Crystal E; Merritt, Matthew E et al. (2017) Hyperpolarized ?-[1-13 C]gluconolactone as a probe of the pentose phosphate pathway. NMR Biomed 30:
Funk, Alexander M; Anderson, Brian L; Wen, Xiaodong et al. (2017) The rate of lactate production from glucose in hearts is not altered by per-deuteration of glucose. J Magn Reson 284:86-93
Zhang, Liang; Habib, Amyn A; Zhao, Dawen (2016) Phosphatidylserine-targeted liposome for enhanced glioma-selective imaging. Oncotarget 7:38693-38706
Walker, Christopher M; Merritt, Matthew; Wang, Jian-Xiong et al. (2016) Use of a Multi-compartment Dynamic Single Enzyme Phantom for Studies of Hyperpolarized Magnetic Resonance Agents. J Vis Exp :e53607
Wu, Yunkou; Zhang, Shanrong; Soesbe, Todd C et al. (2016) pH imaging of mouse kidneys in vivo using a frequency-dependent paraCEST agent. Magn Reson Med 75:2432-41
Malloy, Craig R; Sherry, A Dean (2016) Biochemical Specificity in Human Cardiac Imaging by 13C Magnetic Resonance Imaging. Circ Res 119:1146-1148
Moss, Lacy R; Mulik, Rohit S; Van Treuren, Tim et al. (2016) Investigation into the distinct subcellular effects of docosahexaenoic acid loaded low-density lipoprotein nanoparticles in normal and malignant murine liver cells. Biochim Biophys Acta 1860:2363-2376
Bastiaansen, Jessica A M; Merritt, Matthew E; Comment, Arnaud (2016) Measuring changes in substrate utilization in the myocardium in response to fasting using hyperpolarized [1-(13)C]butyrate and [1-(13)C]pyruvate. Sci Rep 6:25573

Showing the most recent 10 out of 374 publications