T helper (Th) 17 cells are thought to play a key role in the development and pathogenesis of autoimmunediseases, including multiple sclerosis (MS) and its murine models, experimental autoimmune encephalomyelitis(EAE), rheumatoid arthritis, inflammatory bowel disease, and systemic lupus erythematosus. The developmentof Th17 cells is controlled by ROR?t, and small molecules that target ROR?t attenuate Th17 response and theseverity of EAE and cutaneous inflammation. However, the regulation of ROR?t activity during Th17 celldifferentiation by TCR signaling is largely unknown. Nedd4 (also known as Nedd4-1, neuronal precursor cell-expressed developmentally down-regulated 4) is a HECT-type E3 ubiquitin ligase. Through sequence analysis,we identified a PPLYKEL motif, an extended Nedd4 WW domain-binding motif, at the carboxyl terminus of theROR?t ligand-binding domain, suggesting that ROR?t may be a binding partner of Nedd4. Indeed, Nedd4 istyrosine-phosphorylated and activated upon TCR/CD28 stimulation and binds to ROR?t which undergoes K63-linked poly-ubiquitination. This ubiquitination is abrogated in T cells lacking Nedd4. Further analysis showed thatalthough Nedd4 deficiency does not impair Th1, Th2, and inducible regulatory T cell differentiation, Th17 celldifferentiation is greatly compromised in the absence of Nedd4. In support of this observation, mice deficient forNedd4, or deficient for Nedd4 in T cells, have ameliorated EAE with impaired Th17 responses. Based upon thesepreliminary data, we hypothesize that upon T cell antigenic stimulation Nedd4 is activated by Src kinase(s), andtargets ROR?t for K63-linked polyubiquitination, thus regulating Th17 responses and the susceptibility to EAE inmice and possibly MS in humans. In this proposal, we will investigate 1) How Nedd4 potentiates Th17 celldifferentiation in vitro; 2) Whether Nedd4 promotes Th17 responses in vivo, regulating the susceptibility to EAE;and 3) How Nedd4 is activated in T cells in response to TCR/CD28 stimulation. The identification of Nedd4 as akey molecule regulating Th17 responses and the pathogenesis of EAE, and possibly MS, will have potentialimplications for using this molecule as a therapeutic target to treat autoimmune diseases involving Th17.

Public Health Relevance

The development of T cell-mediated autoimmunity involves the development of autoimmune T cell responses.The identification of Nedd4 as a key molecule regulating Th17 responses and the pathogenesis of multiplesclerosis and its animal model experimental autoimmune encephalomyelitis will have potential implications forusing this molecule as a therapeutic target to treat autoimmune diseases involving Th17.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI090901-12
Application #
9301454
Study Section
Hypersensitivity, Autoimmune, and Immune-mediated Diseases Study Section (HAI)
Program Officer
Esch, Thomas R
Project Start
2003-03-01
Project End
2021-05-31
Budget Start
2017-06-01
Budget End
2018-05-31
Support Year
12
Fiscal Year
2017
Total Cost
$514,990
Indirect Cost
$175,612
Name
Ohio State University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Tang, Juan; Lin, Guoxin; Langdon, Wallace Y et al. (2018) Regulation of C-Type Lectin Receptor-Mediated Antifungal Immunity. Front Immunol 9:123
Tang, Rong; Langdon, Wallace Y; Zhang, Jian (2018) Regulation of immune responses by E3 ubiquitin ligase Cbl-b. Cell Immunol :
Yin, Jinghua; Zhang, Jian; Lu, Qianjin (2017) The role of basic leucine zipper transcription factor E4BP4 in the immune system and immune-mediated diseases. Clin Immunol 180:5-10
Xiao, Yun; Tang, Juan; Guo, Hui et al. (2016) Targeting CBLB as a potential therapeutic approach for disseminated candidiasis. Nat Med 22:906-14
Yang, Lifen; Qiao, Guilin; Hassan, Yassir et al. (2016) Program Death-1 Suppresses Autoimmune Arthritis by Inhibiting Th17 Response. Arch Immunol Ther Exp (Warsz) 64:417-23
Xiao, Yun; Qiao, Guilin; Tang, Juan et al. (2015) Protein Tyrosine Phosphatase SHP-1 Modulates T Cell Responses by Controlling Cbl-b Degradation. J Immunol 195:4218-27
Zhao, Yixia; Guo, Hui; Qiao, Guilin et al. (2015) E3 Ubiquitin Ligase Cbl-b Regulates Thymic-Derived CD4+CD25+ Regulatory T Cell Development by Targeting Foxp3 for Ubiquitination. J Immunol 194:1639-45
Zhao, Yixia; Lei, Minxiang; Wang, Zhaoyuan et al. (2014) TCR-induced, PKC-?-mediated NF-?B activation is regulated by a caspase-8-caspase-9-caspase-3 cascade. Biochem Biophys Res Commun 450:526-31
Liu, Qingjun; Zhou, Hong; Langdon, Wallace Y et al. (2014) E3 ubiquitin ligase Cbl-b in innate and adaptive immunity. Cell Cycle 13:1875-84
Sano, Masaki; Sasaki, Takeshi; Hirakawa, Satoshi et al. (2014) Lymphangiogenesis and angiogenesis in abdominal aortic aneurysm. PLoS One 9:e89830

Showing the most recent 10 out of 19 publications