T helper (Th) 17 cells are thought to play a key role in the development and pathogenesis of autoimmune diseases, including multiple sclerosis (MS) and its murine models, experimental autoimmune encephalomyelitis (EAE), rheumatoid arthritis, inflammatory bowel disease, and systemic lupus erythematosus. The development of Th17 cells is controlled by ROR?t, and small molecules that target ROR?t attenuate Th17 response and the severity of EAE and cutaneous inflammation. However, the regulation of ROR?t activity during Th17 cell differentiation by TCR signaling is largely unknown. Nedd4 (also known as Nedd4-1, neuronal precursor cell- expressed developmentally down-regulated 4) is a HECT-type E3 ubiquitin ligase. Through sequence analysis, we identified a PPLYKEL motif, an extended Nedd4 WW domain-binding motif, at the carboxyl terminus of the ROR?t ligand-binding domain, suggesting that ROR?t may be a binding partner of Nedd4. Indeed, Nedd4 is tyrosine-phosphorylated and activated upon TCR/CD28 stimulation and binds to ROR?t which undergoes K63- linked poly-ubiquitination. This ubiquitination is abrogated in T cells lacking Nedd4. Further analysis showed that although Nedd4 deficiency does not impair Th1, Th2, and inducible regulatory T cell differentiation, Th17 cell differentiation is greatly compromised in the absence of Nedd4. In support of this observation, mice deficient for Nedd4, or deficient for Nedd4 in T cells, have ameliorated EAE with impaired Th17 responses. Based upon these preliminary data, we hypothesize that upon T cell antigenic stimulation Nedd4 is activated by Src kinase(s), and targets ROR?t for K63-linked polyubiquitination, thus regulating Th17 responses and the susceptibility to EAE in mice and possibly MS in humans. In this proposal, we will investigate 1) How Nedd4 potentiates Th17 cell differentiation in vitro; 2) Whether Nedd4 promotes Th17 responses in vivo, regulating the susceptibility to EAE; and 3) How Nedd4 is activated in T cells in response to TCR/CD28 stimulation. The identification of Nedd4 as a key molecule regulating Th17 responses and the pathogenesis of EAE, and possibly MS, will have potential implications for using this molecule as a therapeutic target to treat autoimmune diseases involving Th17.

Public Health Relevance

The development of T cell-mediated autoimmunity involves the development of autoimmune T cell responses. The identification of Nedd4 as a key molecule regulating Th17 responses and the pathogenesis of multiple sclerosis and its animal model experimental autoimmune encephalomyelitis will have potential implications for using this molecule as a therapeutic target to treat autoimmune diseases involving Th17.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI090901-14
Application #
9484240
Study Section
Hypersensitivity, Autoimmune, and Immune-mediated Diseases Study Section (HAI)
Program Officer
Esch, Thomas R
Project Start
2017-12-01
Project End
2021-05-31
Budget Start
2018-06-01
Budget End
2019-05-31
Support Year
14
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Iowa
Department
Pathology
Type
Schools of Medicine
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Tang, Juan; Lin, Guoxin; Langdon, Wallace Y et al. (2018) Regulation of C-Type Lectin Receptor-Mediated Antifungal Immunity. Front Immunol 9:123
Tang, Rong; Langdon, Wallace Y; Zhang, Jian (2018) Regulation of immune responses by E3 ubiquitin ligase Cbl-b. Cell Immunol :
Yin, Jinghua; Zhang, Jian; Lu, Qianjin (2017) The role of basic leucine zipper transcription factor E4BP4 in the immune system and immune-mediated diseases. Clin Immunol 180:5-10
Xiao, Yun; Tang, Juan; Guo, Hui et al. (2016) Targeting CBLB as a potential therapeutic approach for disseminated candidiasis. Nat Med 22:906-14
Yang, Lifen; Qiao, Guilin; Hassan, Yassir et al. (2016) Program Death-1 Suppresses Autoimmune Arthritis by Inhibiting Th17 Response. Arch Immunol Ther Exp (Warsz) 64:417-23
Xiao, Yun; Qiao, Guilin; Tang, Juan et al. (2015) Protein Tyrosine Phosphatase SHP-1 Modulates T Cell Responses by Controlling Cbl-b Degradation. J Immunol 195:4218-27
Zhao, Yixia; Guo, Hui; Qiao, Guilin et al. (2015) E3 Ubiquitin Ligase Cbl-b Regulates Thymic-Derived CD4+CD25+ Regulatory T Cell Development by Targeting Foxp3 for Ubiquitination. J Immunol 194:1639-45
Sano, Masaki; Sasaki, Takeshi; Hirakawa, Satoshi et al. (2014) Lymphangiogenesis and angiogenesis in abdominal aortic aneurysm. PLoS One 9:e89830
Zhang, Jian; Liu, Qingjun; Langdon, Wallace Y (2014) Cbl-b: Roles in T Cell Tolerance, Proallergic T Cell Development, and Cancer Immunity. Inflamm Cell Signal 1:
Qiao, Guilin; Ying, Haiyan; Zhao, Yixia et al. (2014) E3 ubiquitin ligase Cbl-b suppresses proallergic T cell development and allergic airway inflammation. Cell Rep 6:709-23

Showing the most recent 10 out of 19 publications