Interferon (IFN) induction and signaling is an early antiviral response triggered by viral double-stranded (ds)RNA. While critical to limiting viral replication and spread, overexpression of the IFN response can be detrimental to human health. For example, Aicardi-Goutires syndrome (AGS) is a severe neurodevelopmental and inflammatory genetic disease, characterized by excessive IFN production and signaling induced by host self-dsRNA. Thus it is important to understand how the host regulates dsRNA pathways induced by self- dsRNA as well as viral (non self)-dsRNA. Oligoadenylate synthetase-ribonuclease L (OAS-RNase L) is a potent antiviral pathway that severely limits pathogenesis of many viruses. Upon sensing dsRNA, OASs produce 2',5'-oligoadenylates (2-5A) which activate RNase L to cleave both host and viral single-stranded RNA thereby limiting protein production, virus replication and spread, and leading to apoptotic cell death. During the last period we identified and characterized virus- and host-encoded phosphodiesterases (PDEs) as potent antagonists of RNase L activation, most notably the PDE of murine coronavirus (MHV), NS2, a liver specific virulence factor. We also identified OAS3 as the principal antiviral OAS in human cells. Moreover, we found that RNase L is the dominant dsRNA-dependent pathway leading to apoptosis in human cell lines by exogenous dsRNA or by self-dsRNA in cells ablated for expression of ADAR1, an enzyme that destabilizes dsRNA and when mutated can cause AGS. However, there is a gap in understanding how the activation of RNase L is controlled to prevent the potentially destructive effects of dsRNA while still maintaining the ability to limit viral replication and spread. In the continuation of this project, we will test the hypothesis that the host and viruses have multiple pathways to control the levels of 2-5A, its activation of RNase L and the directly antiviral as well as proapoptotic and proinflammatory effects of RNase L. We will use innovative approaches to investigate the OAS-RNase L system in three complementary species-specific systems, each with unique features. We will investigate: 1) how ADAR1 isoforms and host PDEs regulate levels of 2-5A in human cells, and determine which OAS isoforms are involved; 2) how the antiviral, apoptotic and inflammatory roles of RNase L cooperate to effect viral clearance in an MHV mouse model; and 3) how the OAS-RNase L pathway is expressed and activated in bats, and the mechanism(s) underlying antagonism of OAS-RNase L activation by filovirus VP35. Results of these studies should provide a better understanding of how host enzymes control the levels of self-dsRNA and 2-5A to limit RNase L activity in uninfected cells, while allowing activation during viral infections as well as the combined antiviral, apoptotic and proinflammatory roles of RNase L in viral clearance. These studies will allow us to identify targets that enhance host cell resistance to virus while minimizing the threat of over activation of OAS-RNase L to the host, and finally may contribute to identifying therapeutic strategies for viral diseases and for AGS patients with mutations in ADAR1.

Public Health Relevance

Interferon (IFN) induction and signaling is an early antiviral response triggered by viral double-stranded RNA and while critical to limiting viral replication and spread, over expression of the IFN response can be detrimental to human health. These studies will identify and investigate protein targets that mediate host cell resistance to virus while minimizing the threat of excessive RNase L activation to the host. The data obtained may contribute to identifying therapeutic strategies for viral infections and a genetic disease that we have linked to the RNase L pathway.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI104887-07
Application #
9819771
Study Section
Virology - B Study Section (VIRB)
Program Officer
Park, Eun-Chung
Project Start
2013-01-01
Project End
2023-12-31
Budget Start
2020-01-01
Budget End
2020-12-31
Support Year
7
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Drappier, Melissa; Jha, Babal Kant; Stone, Sasha et al. (2018) A novel mechanism of RNase L inhibition: Theiler's virus L* protein prevents 2-5A from binding to RNase L. PLoS Pathog 14:e1006989
Case, James Brett; Li, Yize; Elliott, Ruth et al. (2018) Murine Hepatitis Virus nsp14 Exoribonuclease Activity Is Required for Resistance to Innate Immunity. J Virol 92:
Li, Yize; Banerjee, Shuvojit; Goldstein, Stephen A et al. (2017) Ribonuclease L mediates the cell-lethal phenotype of double-stranded RNA editing enzyme ADAR1 deficiency in a human cell line. Elife 6:
Kindler, Eveline; Gil-Cruz, Cristina; Spanier, Julia et al. (2017) Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication. PLoS Pathog 13:e1006195
Goldstein, Stephen A; Thornbrough, Joshua M; Zhang, Rong et al. (2017) Lineage A Betacoronavirus NS2 Proteins and the Homologous Torovirus Berne pp1a Carboxy-Terminal Domain Are Phosphodiesterases That Antagonize Activation of RNase L. J Virol 91:
Xu, Jie; Sun, Yan; Li, Yize et al. (2017) Replication defective viral genomes exploit a cellular pro-survival mechanism to establish paramyxovirus persistence. Nat Commun 8:799
Zalinger, Zachary B; Elliott, Ruth; Weiss, Susan R (2017) Role of the inflammasome-related cytokines Il-1 and Il-18 during infection with murine coronavirus. J Neurovirol 23:845-854
Birdwell, L Dillon; Zalinger, Zachary B; Li, Yize et al. (2016) Activation of RNase L by Murine Coronavirus in Myeloid Cells Is Dependent on Basal Oas Gene Expression and Independent of Virus-Induced Interferon. J Virol 90:3160-72
Thornbrough, Joshua M; Jha, Babal K; Yount, Boyd et al. (2016) Middle East Respiratory Syndrome Coronavirus NS4b Protein Inhibits Host RNase L Activation. MBio 7:e00258
Sui, Baokun; Huang, Junhua; Jha, Babal K et al. (2016) Crystal structure of the mouse hepatitis virus ns2 phosphodiesterase domain that antagonizes RNase L activation. J Gen Virol 97:880-6

Showing the most recent 10 out of 18 publications