Systemic sclerosis (SSc) is a connective tissue disease of unknown etiology that affects mostly women and is associated with significant morbidity and mortality. No effective therapies or cures for SSc are yet available. One of the hallmarks of SSc is overproduction of extracellular matrix components such as collagen and fibronectin by fibroblasts in the skin and internal organs. We have made the novel observation of a 20-fold increase in the expression of insulin-like growth factor binding protein 5 (IGFBP-5) in fibroblasts from the clinically affected skin of SSc patients. IGFBP-5, as well as IGFBP-3, are produced by fibroblasts and modulate the actions of IGF-I, including fibroblast activation and overproduction of collagen. We hypothesize that the IGFBP/IGF-I axis contributes to the development and perpetuation of skin and lung fibrosis in SSc. Our studies will use two unique sample sets available to us--fibroblasts and tissues from monozygotic (MZ) and dizygotic (DZ) twins discordant for SSc and from lungs of SSc patients undergoing lung transplant surgery and unused donor lungs-and target two organs affected by SSc--skin and lung. These samples constitute a unique and valuable resource.
Our aims are l) to determine the regulation of IGFBP-3 and IGFBP-5 in vitro and in vivo in skin an lung tissues of SSc patients and twin and non-twin controls; 2) to determine the function of IGFBPs on skin and lung fibroblasts and identify key molecules downstream of IGFBPs; 3) to determine the mechanism of IGFBP-mediated effects on fibroblasts, including whether the effect of IGFBPs is IGF-I-dependent or - independent, the identification of IGFBP binding partners, and the effect of suppressing IGFBP expression on the fibrotic phenotype. Our combined approach using lung and skin fibroblasts and tissues will allow us to identify the systemic mechanisms that underlie the skin and lung phenotype in SSc, while the use of samples from twins discordant for SSc will allow us to determine the importance of the inherited genetic background in the development of the 'scleroderma' phenotype. Our results will provide important insights into mechanisms of overproduction of extracellular matrix components by fibroblasts and thus the pathogenesis of fibrosis. Identifying key steps in the cascade of events culminating in fibrosis will facilitate the development of novel targeted therapies for scleroderma and for other fibrotic conditions.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR050840-02
Application #
6805633
Study Section
Special Emphasis Panel (ZAR1-TAS-D (O2))
Program Officer
Gretz, Elizabeth
Project Start
2003-09-30
Project End
2007-05-31
Budget Start
2004-06-01
Budget End
2005-05-31
Support Year
2
Fiscal Year
2004
Total Cost
$358,801
Indirect Cost
Name
University of Pittsburgh
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Su, Yunyun; Nishimoto, Tetsuya; Feghali-Bostwick, Carol (2015) IGFBP-5 Promotes Fibrosis Independently of Its Translocation to the Nucleus and Its Interaction with Nucleolin and IGF. PLoS One 10:e0130546
Fan, Ming-Hui; Feghali-Bostwick, Carol A; Silver, Richard M (2014) Update on scleroderma-associated interstitial lung disease. Curr Opin Rheumatol 26:630-6
Yasuoka, Hidekata; Yamaguchi, Yukie; Feghali-Bostwick, Carol A (2014) The membrane-associated adaptor protein DOK5 is upregulated in systemic sclerosis and associated with IGFBP-5-induced fibrosis. PLoS One 9:e87754
Aida-Yasuoka, Keiko; Peoples, Christine; Yasuoka, Hidekata et al. (2013) Estradiol promotes the development of a fibrotic phenotype and is increased in the serum of patients with systemic sclerosis. Arthritis Res Ther 15:R10
Ruiz, Ximena D; Mlakar, Logan R; Yamaguchi, Yukie et al. (2012) Syndecan-2 is a novel target of insulin-like growth factor binding protein-3 and is over-expressed in fibrosis. PLoS One 7:e43049
Yamaguchi, Yukie; Takihara, Takahisa; Chambers, Roger A et al. (2012) A peptide derived from endostatin ameliorates organ fibrosis. Sci Transl Med 4:136ra71
Brissett, Monique; Veraldi, Kristen L; Pilewski, Joseph M et al. (2012) Localized expression of tenascin in systemic sclerosis-associated pulmonary fibrosis and its regulation by insulin-like growth factor binding protein 3. Arthritis Rheum 64:272-80
Veraldi, Kristen L; Feghali-Bostwick, Carol A (2012) Insulin-like growth factor binding proteins-3 and -5: central mediators of fibrosis and promising new therapeutic targets. Open Rheumatol J 6:140-5
Yamaguchi, Yukie; Yasuoka, Hidekata; Stolz, Donna B et al. (2011) Decreased caveolin-1 levels contribute to fibrosis and deposition of extracellular IGFBP-5. J Cell Mol Med 15:957-69
Lam, Anna P; Flozak, Annette S; Russell, Susan et al. (2011) Nuclear ?-catenin is increased in systemic sclerosis pulmonary fibrosis and promotes lung fibroblast migration and proliferation. Am J Respir Cell Mol Biol 45:915-22

Showing the most recent 10 out of 24 publications