Systemic sclerosis (SSc) is an idiopathic connective tissue disease of unknown etiology that leads to debilitating and life-threatening fibrosis. Currently, no effective therapeutic or curative measures are available. We have recently made the novel observation of a significant increase in Insulin-Like Growth Factor Binding Protein-5 (IGFBP-5) expression in skin fibroblasts from patients with systemic sclerosis. We have further demonstrated increased IGFBP-5 in lung tissues of patients with pulmonary fibrosis and in primary fibroblasts cultured from these tissues. Furthermore, we have shown that IGFBP-5 is pro- fibrotic both in vitro and in vivo, suggesting that IGFBP-5 can initiate and perpetuate the fibrotic response. Collectively, our findings establish IGFBP-5 as a novel pro-fibrotic factor. We now demonstrate that IGFBP-5 induces reactive oxygen species (ROS) generation in primary fibroblasts. We also demonstrate trafficking of IGFBP-5 to caveolar and nuclear compartments. Furthermore, we show that IGFBP-5 induces expression and nuclear translocation of a novel DOK/IRS protein. We hypothesize that IGFBP-5 is a novel mediator of fibrosis that exerts its effects via a redox-sensitive signaling cascade. Moreover, IGFBP-5 trafficking and its pro-fibrotic activity are caveolin-dependent and involve induction of DOK5/IRS6 and nucleocytoplasmic shuttling of IGFBP-5 and DOK5/IRS6.
Our specific aims are designed to test our hypothesis. We plan to 1) determine the role of redox-sensitive and -insensitive pathways in mediating the fibrotic effects of IGFBP-5, 2) determine whether the new DOK/IRS protein, DOK5/IRS6, induced by IGFBP-5, mediates its fibrotic effects, and 3) examine the role of nuclear compartmentalization of IGFBP-5 in its fibrotic activity. It is thus our goal to determine the mechanism by which IGFBP-5 induces fibrosis using a combination of in vitro, in vivo, and organ culture approaches. Completion of these aims will define the mechanism for the pro-fibrotic effects of IGFBP-5, and potentially identify novel therapeutic targets for the treatment of SSc and other fibrosing diseases. ? ?

Public Health Relevance

The proposed studies will yield new insights into the mechanism of action of IGFBP-5, a novel mediator of fibrosis. Our studies will also generate new targets for the development of future therapies for the treatment of systemic sclerosis and other fibrotic diseases. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
2R01AR050840-05A1
Application #
7522662
Study Section
Arthritis, Connective Tissue and Skin Study Section (ACTS)
Program Officer
Mancini, Marie
Project Start
2003-09-30
Project End
2013-05-31
Budget Start
2008-07-01
Budget End
2009-05-31
Support Year
5
Fiscal Year
2008
Total Cost
$333,300
Indirect Cost
Name
University of Pittsburgh
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Su, Yunyun; Nishimoto, Tetsuya; Feghali-Bostwick, Carol (2015) IGFBP-5 Promotes Fibrosis Independently of Its Translocation to the Nucleus and Its Interaction with Nucleolin and IGF. PLoS One 10:e0130546
Fan, Ming-Hui; Feghali-Bostwick, Carol A; Silver, Richard M (2014) Update on scleroderma-associated interstitial lung disease. Curr Opin Rheumatol 26:630-6
Yasuoka, Hidekata; Yamaguchi, Yukie; Feghali-Bostwick, Carol A (2014) The membrane-associated adaptor protein DOK5 is upregulated in systemic sclerosis and associated with IGFBP-5-induced fibrosis. PLoS One 9:e87754
Aida-Yasuoka, Keiko; Peoples, Christine; Yasuoka, Hidekata et al. (2013) Estradiol promotes the development of a fibrotic phenotype and is increased in the serum of patients with systemic sclerosis. Arthritis Res Ther 15:R10
Ruiz, Ximena D; Mlakar, Logan R; Yamaguchi, Yukie et al. (2012) Syndecan-2 is a novel target of insulin-like growth factor binding protein-3 and is over-expressed in fibrosis. PLoS One 7:e43049
Yamaguchi, Yukie; Takihara, Takahisa; Chambers, Roger A et al. (2012) A peptide derived from endostatin ameliorates organ fibrosis. Sci Transl Med 4:136ra71
Brissett, Monique; Veraldi, Kristen L; Pilewski, Joseph M et al. (2012) Localized expression of tenascin in systemic sclerosis-associated pulmonary fibrosis and its regulation by insulin-like growth factor binding protein 3. Arthritis Rheum 64:272-80
Veraldi, Kristen L; Feghali-Bostwick, Carol A (2012) Insulin-like growth factor binding proteins-3 and -5: central mediators of fibrosis and promising new therapeutic targets. Open Rheumatol J 6:140-5
Yamaguchi, Yukie; Yasuoka, Hidekata; Stolz, Donna B et al. (2011) Decreased caveolin-1 levels contribute to fibrosis and deposition of extracellular IGFBP-5. J Cell Mol Med 15:957-69
Lam, Anna P; Flozak, Annette S; Russell, Susan et al. (2011) Nuclear ?-catenin is increased in systemic sclerosis pulmonary fibrosis and promotes lung fibroblast migration and proliferation. Am J Respir Cell Mol Biol 45:915-22

Showing the most recent 10 out of 24 publications