Toward a transcription therapy for breast cancer. The development of breast cancer is the consequence of uncontrolled growth of breast-ductal epithelial cells. Estrogen hormones, particularly 17beta-estradiol (E2), within the context of interrelated growth signaling pathways play critical roles for the initiation and development of breast cancer. The E2 signaling is primarily conveyed by the transcription factors estrogen receptors (ERs) alpha and beta. E2-ER mediates genomic and non-genomic events that orchestrate cell proliferation, differentiation and death. The interaction of E2-ER with specific DNA sequences, estrogen responsive elements (EREs), constitutes one primary genomic signaling. The E2-ER-mediated events are also affected by intracellular signaling pathways that cross-talk with ER and mutant ERs. Approaches to reduce/ablate the circulating E2 or to alter/prevent ER function constitute the current experimental and therapeutic modalities. Perturbations of the estrogen/ER environment are initially successful in the remission of established tumors. However, many breast tumors are not responsive or eventually develop resistance to these therapies. The absence/loss of ER expression, aberrant signaling pathways and/or variant ERs are thought to circumvent the need for ligand-ER mediated events rendering such approaches ineffective. We sought to overcome the limitations imposed by ligand, dimerization and ER-subtype in E2 signaling by specifically regulating the ERE-driven gene network. The modular nature of ER allowed us to design a monomeric ERE binding module by co-joining two DNA binding domains with the hinge domain (CDC). Integration into this CDC module of strong activation domains from other transcription factors generated constitutive ERE binding activators that specifically induced ERE-driven gene expression independent of ligand, dimerization, ER-subtype, and cell-context. We predict that the CDC module may also be used to generate potent ERE binding repressers. To effectively assess the impact of ERE binding transregulators on gene expression and subsequent alterations in cell phenotypes in vitro and in vivo, we propose to establish an adenoviral gene delivery system. Using this system, we will also identify the ERE-driven genes by a gene array approach. We anticipate that findings will be critical for the identification of new therapeutic targets, the development of prognostic tools and of a novel """"""""transcription therapy"""""""" for breast cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA113682-04
Application #
7617538
Study Section
Tumor Cell Biology Study Section (TCB)
Program Officer
Sathyamoorthy, Neeraja
Project Start
2006-05-03
Project End
2011-03-31
Budget Start
2009-04-01
Budget End
2010-03-31
Support Year
4
Fiscal Year
2009
Total Cost
$268,871
Indirect Cost
Name
University of Rochester
Department
Biochemistry
Type
Schools of Dentistry
DUNS #
041294109
City
Rochester
State
NY
Country
United States
Zip Code
14627
Muyan, Mesut; Callahan, Linda M; Huang, Yanfang et al. (2012) The ligand-mediated nuclear mobility and interaction with estrogen-responsive elements of estrogen receptors are subtype specific. J Mol Endocrinol 49:249-66
Huang, Yanfang; Li, Xiaodong; Muyan, Mesut (2011) Estrogen receptors similarly mediate the effects of 17?-estradiol on cellular responses but differ in their potencies. Endocrine 39:48-61
Nott, Stephanie L; Huang, Yanfang; Kalkanoglu, Aja et al. (2010) Designer monotransregulators provide a basis for a transcriptional therapy for de novo endocrine-resistant breast cancer. Mol Med 16:10-8
Nott, Stephanie L; Huang, Yanfang; Li, Xiaodong et al. (2009) Genomic responses from the estrogen-responsive element-dependent signaling pathway mediated by estrogen receptor alpha are required to elicit cellular alterations. J Biol Chem 284:15277-88
Li, Xiaodong; Nott, Stephanie L; Huang, Yanfang et al. (2008) Gene expression profiling reveals that the regulation of estrogen-responsive element-independent genes by 17 beta-estradiol-estrogen receptor beta is uncoupled from the induction of phenotypic changes in cell models. J Mol Endocrinol 40:211-29
Nott, Stephanie L; Huang, Yanfang; Fluharty, Brian R et al. (2008) Do Estrogen Receptor beta Polymorphisms Play A Role in the Pharmacogenetics of Estrogen Signaling? Curr Pharmacogenomics Person Med 6:239-259
Li, Xiaodong; Huang, Jing; Fluharty, Brian R et al. (2008) What are comparative studies telling us about the mechanism of ERbeta action in the ERE-dependent E2 signaling pathway? J Steroid Biochem Mol Biol 109:266-72