Diabetes and metabolic syndrome (MetS) afflicts close to 70 million Americans and diabetes accounts for close to half of all new cases of kidney failure. There is increasing interest in finding therapeutic targets and therapies that target multiple risk factors, thereby minimizing problems associated with multi-drug regimens in MetS and type 2 diabetic patients. The eicosanoid metabolome is altered in MetS and type 2 diabetes patients. The eicosanoid metabolome is altered in MetS and type 2 diabetes, and such alterations have been demonstrated to affect multiple factors including blood pressure, lipid levels, and insulin signaling. We have developed a novel chemical entity, 4-(phenyl-3-{3-[-(4-trifluoromethyl-phenyl)-ureido]-propyl}-pyrazol-1-yl)- benzenesulfonamide (PTUPB), that uniquely inhibits both soluble epoxide hydrolase (sEH) and cyclooxygenase (COX) and demonstrates potential as a therapeutic for MetS, type 2 diabetes and the associated kidney failure. Our long-term objective is to make significant steps towards an ultimate goal of an Investigational New Drug (IND) application for a novel chemical entity that uniquely alters eicosanoid metabolites and demonstrates potential as a therapeutic for MetS, type 2 diabetes. The overall objective of this application, which is the next step toward attainment of our long-term goal, is the pharmacological testing and the development and optimization of PTUPB-based COX-2/sEH inhibitors as a novel therapy for MetS and type 2 diabetes. Our central hypothesis is that inhibition of both COX-2 and sEH will uniquely alter eicosanoid metabolites to improve insulin signaling and renal function in MetS and type 2 diabetes. Our preliminary experiments demonstrate that the COX-2/sEH inhibitor, PTUPB has great therapeutic potential for treating multiple risk factors of MetS, type 2 diabetes and the associated kidney failure. Guided by strong preliminary data, our central hypothesis will be tested by pursuing three specific aims: 1) Optimize the PTUPB chemical scaffold to enhance the pharmacokinetic profile and the therapeutic potential; 2) Test the hypothesis that COX- 2/sEH inhibitors will manipulate eicosanoid metabolites to improve insulin signaling and pancreatic function, and decrease renal injury in MetS; 3) Test the hypothesis that COX-2/sEH inhibitors will manipulate eicosanoid metabolites to improve insulin signaling and pancreatic function, and decrease renal injury in type 2 diabetes. This project will conduct pharmacological testing of prototype small molecules in relevant animal models of MetS and type 2 diabetes. A major part of this proposal will be to utilize medicinal chemistry and computational approaches to optimize our early pre-therapeutic lead PTUPB. This contribution will be significant because it will open the door for identification and further development of COX-2/sEH inhibitors towards a therapeutic for diabetes and kidney disease.

Public Health Relevance

The proposed research is relevant to public health because diabetes and metabolic syndrome afflicts 70 million Americans. Kidney disease is a major complication in metabolic syndrome and type 2 diabetic patients and diabetes causes almost half of all new cases of kidney failure in 2008. This research project will validate that disruptio of eicosanoid metabolism is a key feature of type 2 diabetes and metabolic syndrome. We will address short and long-term efficacy and safety of PTUPB-based COX-2/sEH inhibitors. This is a required early-stage pharmacological target validation to test and validate our lead compound to safely alter disease progress and outcomes in humans. This is directly responsive to the mission of NIH NIDDK and PAR-13-007 because of the very substantial burden of diabetes, metabolic syndrome, and kidney disease in the USA.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
1R01DK103616-01A1
Application #
8962739
Study Section
Special Emphasis Panel (ZRG1-EMNR-R (56))
Program Officer
Pawlyk, Aaron Christopher
Project Start
2015-08-20
Project End
2020-06-30
Budget Start
2015-08-20
Budget End
2016-06-30
Support Year
1
Fiscal Year
2015
Total Cost
$485,131
Indirect Cost
$121,260
Name
Medical College of Wisconsin
Department
Pharmacology
Type
Schools of Medicine
DUNS #
937639060
City
Milwaukee
State
WI
Country
United States
Zip Code
53226
Imig, John D (2018) Prospective for cytochrome P450 epoxygenase cardiovascular and renal therapeutics. Pharmacol Ther 192:1-19
Wang, Fuli; Zhang, Hongyong; Ma, Ai-Hong et al. (2018) COX-2/sEH Dual Inhibitor PTUPB Potentiates the Antitumor Efficacy of Cisplatin. Mol Cancer Ther 17:474-483
Kala, P; Sedláková, L; Škaroupková, P et al. (2018) Effect of angiotensin-converting enzyme blockade, alone or combined with blockade of soluble epoxide hydrolase, on the course of congestive heart failure and occurrence of renal dysfunction in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Physiol Res 67:401-415
Hao, Lei; Kearns, Jamie; Scott, Sheyenne et al. (2018) Indomethacin Enhances Brown Fat Activity. J Pharmacol Exp Ther 365:467-475
Harris, Todd R; Kodani, Sean; Rand, Amy A et al. (2018) Celecoxib Does Not Protect against Fibrosis and Inflammation in a Carbon Tetrachloride-Induced Model of Liver Injury. Mol Pharmacol 94:834-841
Miller, Bradley S; Blumenthal, Shoshana R; Shalygin, Alexey et al. (2018) Inactivation of p66Shc Decreases Afferent Arteriolar KATP Channel Activity and Decreases Renal Damage in Diabetic Dahl SS Rats. Diabetes 67:2206-2212
Bastan, Idil; Ge, Xiao Na; Dileepan, Mythili et al. (2018) Inhibition of soluble epoxide hydrolase attenuates eosinophil recruitment and food allergen-induced gastrointestinal inflammation. J Leukoc Biol 104:109-122
Lakkappa, Navya; Krishnamurthy, Praveen T; Yamjala, Karthik et al. (2018) Evaluation of antiparkinson activity of PTUPB by measuring dopamine and its metabolites in Drosophila melanogaster: LC-MS/MS method development. J Pharm Biomed Anal 149:457-464
?ertíková Chábová, V?ra; Kujal, Petr; Škaroupková, Petra et al. (2018) Combined Inhibition of Soluble Epoxide Hydrolase and Renin-Angiotensin System Exhibits Superior Renoprotection to Renin-Angiotensin System Blockade in 5/6 Nephrectomized Ren-2 Transgenic Hypertensive Rats with Established Chronic Kidney Disease. Kidney Blood Press Res 43:329-349
Yeboah, Michael M; Hye Khan, Md Abdul; Chesnik, Marla A et al. (2018) Role of the cytochrome P-450/ epoxyeicosatrienoic acids pathway in the pathogenesis of renal dysfunction in cirrhosis. Nephrol Dial Transplant 33:1333-1343

Showing the most recent 10 out of 22 publications