Many disease processes are characterized by substantially different mechanical properties than surrounding normal tissue. This accounts for the efficacy of palpation as a clinical technique to detect cancer and other abnormalities. Indeed, many tumors of the thyroid, breast, and prostate are still first detected by this centuries- old diagnostic technique. Unfortunately, palpation is a subjective technique and small or inaccessible abnormalities cannot be detected by touch. Conventional imaging methods such as ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI) do not provide information that is in any way analogous. The goal of this research is to develop, validate, explore and identify high-impact applications of a new diagnostic imaging technology for quantitatively assessing the mechanical properties of tissues. We call this technique Magnetic Resonance Elastography (MRE). Mechanical waves are generated in tissue and a remarkably sensitive phase-contrast MRI technique, using synchronous motion-sensitizing gradients, is used to directly image the pattern of wave propagation. Specially-developed mathematical algorithms are used to analyze the wave images and to generate quantitative images depicting the stiffness and other mechanical properties of tissue. At the onset of this research, the central hypothesis was that MRE can be successfully implemented as a practical scientific and clinical tool and that it would be useful for detecting and characterizing focal and diffuse disease processes that may be difficult to investigate by other methods. The research in the last cycle of this grant has confirmed this hypothesis by developing, validating, and introducing into clinical research an MRE- based technique for diagnosing chronic liver disease. The research has indicated that in this role, MRE is a more-comfortable, safer, less-expensive alternative to biopsy. The research plan for the next grant cycle includes investigations to further understand and develop the underlying technology of MRE, to develop practical methods for applying other applications, and to explore promising new applications in diagnosing disease. The research plan involves theoretical work, basic MRI pulse sequence development, device engineering, studies of animal and human tissue specimens, and protocol testing studies with normal and patient volunteers. Further progress is expected to provide an increasingly useful imaging tool with capabilities to: (1) noninvasively """"""""palpate by imaging"""""""" regions of the body that are beyond the reach of the physician's hand, (2) delineate tumors and other abnormalities before they are severe enough to detect by touch, (3) provide greater sensitivity for assessing changes in tissue mechanical properties, and (4) provide useful new quantitative imaging biomarkers for characterizing tissue properties.

Public Health Relevance

This research will develop and explore a new imaging technology (MR Elastography) that provides unique diagnostic information that cannot be obtained using conventional imaging techniques. The research has already shown that MR Elastography has a promising role in detection of important complications of chronic liver disease, an important health problem in the US and worldwide, as an alternative to invasive biopsy. MR Elastography has many other potential applications, such as cancer detection.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
5R01EB001981-14
Application #
8435481
Study Section
Medical Imaging Study Section (MEDI)
Program Officer
Liu, Guoying
Project Start
1997-07-05
Project End
2015-03-31
Budget Start
2013-04-01
Budget End
2015-03-31
Support Year
14
Fiscal Year
2013
Total Cost
$321,618
Indirect Cost
$117,675
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
McIlvain, Grace; Schwarb, Hillary; Cohen, Neal J et al. (2018) Mechanical properties of the in vivo adolescent human brain. Dev Cogn Neurosci 34:27-33
Ebersole, Christopher; Ahmad, Rizwan; Rich, Adam V et al. (2018) A bayesian method for accelerated magnetic resonance elastography of the liver. Magn Reson Med 80:1178-1188
Yin, Ziying; Sui, Yi; Trzasko, Joshua D et al. (2018) In vivo characterization of 3D skull and brain motion during dynamic head vibration using magnetic resonance elastography. Magn Reson Med 80:2573-2585
Caussy, Cyrielle; Chen, Jun; Alquiraish, Mosab H et al. (2018) Association Between Obesity and Discordance in Fibrosis Stage Determination by Magnetic Resonance vs Transient Elastography in Patients With Nonalcoholic Liver Disease. Clin Gastroenterol Hepatol 16:1974-1982.e7
Kellman, Michael; Rivest, Francois; Pechacek, Alina et al. (2018) Node-Pore Coded Coincidence Correction: Coulter Counters, Code Design, and Sparse Deconvolution. IEEE Sens J 18:3068-3079
Arunachalam, Shivaram P; Arani, Arvin; Baffour, Francis et al. (2018) Regional assessment of in vivo myocardial stiffness using 3D magnetic resonance elastography in a porcine model of myocardial infarction. Magn Reson Med 79:361-369
Cunha, Guilherme Moura; Glaser, Kevin J; Bergman, Anke et al. (2018) Feasibility and agreement of stiffness measurements using gradient-echo and spin-echo MR elastography sequences in unselected patients undergoing liver MRI. Br J Radiol 91:20180126
Arani, Arvin; Min, Hoon-Ki; Fattahi, Nikoo et al. (2018) Acute pressure changes in the brain are correlated with MR elastography stiffness measurements: initial feasibility in an in vivo large animal model. Magn Reson Med 79:1043-1051
Wang, Min; Gao, Feng; Wang, Xiaoqi et al. (2018) Magnetic resonance elastography and T1 mapping for early diagnosis and classification of chronic pancreatitis. J Magn Reson Imaging :
Pepin, K M; McGee, K P; Arani, A et al. (2018) MR Elastography Analysis of Glioma Stiffness and IDH1-Mutation Status. AJNR Am J Neuroradiol 39:31-36

Showing the most recent 10 out of 163 publications