A significant portion of the US population is exposed to toxic, halogenated alkenes (e.g., trichloroethylene, tetrachloroethylene and tetrafluoroethylene) in the workplace and environment. These compounds are metabolized in part to halogenated cysteine S-conjugates, which are thought to be the major toxicants. S-(1,1,2,2-Tetrafluoroethyl)-L-cysteine (TFEC), the cysteine S-conjugate of tetrafluoroethylene, is chosen here as a representative toxic, halogenated cysteine S-conjugate. Toxic, halogenated cysteine S-conjugates are converted to pyruvate, ammonia and a reactive (thioacylating) fragment by cysteine S-conjugate ?-lyases. In vivo, the kidney and, to some extent, liver and brain, are susceptible. Previously, we showed that (i) a high-Mr cysteine S-conjugate ?-lyase in rat kidney co-purifies with mitochondrial HSP70 and protein disulfide isomerase, and contains mitochondrial aspartate aminotransferase (mitAspAT) (ii) several aminotransferases [mitochondrial branched-chain aminotransferase (BCATm), cytosolic branched-chain aminotransferase, alanine-glyoxylate aminotransferase II, mitAspAT] possess cysteine S-conjugate ?-lyase activity, but are themselves inactivated during turnover (syncatalytic inactivation), and (iii) exposure of PC12 cells and astrocytes in culture to TFEC causes selective loss of key mitochondrial enzymes of energy metabolism, including mitAspAT and ?-ketoglutarate dehydrogenase complex (KGDHC). Others have shown that KGDHC and branched-chain keto acid dehydrogenase complex (BCKAD) are targets of TFEC in rat kidney cells in vivo, and that halogenated cysteine S-conjugates are metabolic poisons of isolated kidney and liver mitochondria. The PI and coworkers have suggested that KGDHC and BCKAD are sensitive to inactivation due to toxicant channeling involving mitAspAT and BCATm, respectively. The overall goal of the present proposal is to determine the mechanism by which mitochondrial metabolism is poisoned by TFEC/TFEC thioacylating fragment. Accordingly, our aims are to determine: a) the effects of TFEC on respiration, Ca 2+ homeostasis, membrane potential and swelling in isolated rat liver, brain and kidney mitochondria, and correlate such pathological changes with loss of key mitochondrial enzyme activities, b) the mechanism whereby mitAspAT and BCATm are syncatalytically inactivated by TFEC, and c) the mechanism of toxicant (TFEC thioacylating fragment) transfer (channeling) from mitAspAT to KGDHC and from BCATm to BCKAD. The findings should elucidate the link between exposure to certain halogenated xenobiotics and impaired energy metabolism, and may suggest a means to minimize the toxic effects in heavily exposed individuals. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
2R01ES008421-06A2
Application #
6729472
Study Section
Alcohol and Toxicology Subcommittee 4 (ALTX)
Program Officer
Balshaw, David M
Project Start
1997-08-01
Project End
2008-07-31
Budget Start
2003-09-30
Budget End
2004-07-31
Support Year
6
Fiscal Year
2003
Total Cost
$355,538
Indirect Cost
Name
Winifred Masterson Burke Med Research Institute
Department
Type
DUNS #
780676131
City
White Plains
State
NY
Country
United States
Zip Code
10605
Pinto, John T; Krasnikov, Boris F; Alcutt, Steven et al. (2014) Kynurenine aminotransferase III and glutamine transaminase L are identical enzymes that have cysteine S-conjugate ?-lyase activity and can transaminate L-selenomethionine. J Biol Chem 289:30950-61
Jeitner, Thomas M; Cooper, Arthur J L (2014) Inhibition of human glutamine synthetase by L-methionine-S,R-sulfoximine-relevance to the treatment of neurological diseases. Metab Brain Dis 29:983-9
Vauzour, David; Pinto, John T; Cooper, Arthur J L et al. (2014) The neurotoxicity of 5-S-cysteinyldopamine is mediated by the early activation of ERK1/2 followed by the subsequent activation of ASK1/JNK1/2 pro-apoptotic signalling. Biochem J 463:41-52
Hallen, André; Jamie, Joanne F; Cooper, Arthur J L (2013) Lysine metabolism in mammalian brain: an update on the importance of recent discoveries. Amino Acids 45:1249-72
Tsikas, Dimitrios; Evans, Christopher E; Denton, Travis T et al. (2012) Stable isotope gas chromatography-tandem mass spectrometry determination of aminoethylcysteine ketimine decarboxylated dimer in biological samples. Anal Biochem 430:4-15
Halamkova, Lenka; Mailloux, Shay; Halamek, Jan et al. (2012) Enzymatic analysis of ýý-ketoglutaramate--a biomarker for hyperammonemia. Talanta 100:7-11
Cooper, Arthur J L; Krasnikov, Boris F; Pinto, John T et al. (2012) Comparative enzymology of (2S,4R)4-fluoroglutamine and (2S,4R)4-fluoroglutamate. Comp Biochem Physiol B Biochem Mol Biol 163:108-20
Bridges, Christy C; Krasnikov, Boris F; Joshee, Lucy et al. (2012) New insights into the metabolism of organomercury compounds: mercury-containing cysteine S-conjugates are substrates of human glutamine transaminase K and potent inactivators of cystathionine ?-lyase. Arch Biochem Biophys 517:20-9
Cooper, Arthur Jl; Pinto, John T; Callery, Patrick S (2011) Reversible and irreversible protein glutathionylation: biological and clinical aspects. Expert Opin Drug Metab Toxicol 7:891-910
Pinto, John T; Lee, Jeong-In; Sinha, Raghu et al. (2011) Chemopreventive mechanisms of ýý-keto acid metabolites of naturally occurring organoselenium compounds. Amino Acids 41:29-41

Showing the most recent 10 out of 34 publications