This project is a proof of principle of systems toxicology, a new approach to chemical safety evaluation that integrates molecular, cellular, and physiological data in the context of a genetically diverse animal model to develop testable hypotheses about the key molecular events leading to adverse outcomes following chemical exposure. The project aims to capitalize on the potential of two powerful population-based model organism resources, the Collaborative Cross (CC) and Diversity Outbred (DO) mice, to study the role of genetics in conferring susceptibility to chemical exposures. Through an integrated set of experiments using arsenic exposure in mice and cell lines, the molecular genetic basis of toxicological responses will be evaluated. This project will test the hypothesis that genetic analysis in the context of a quantitative environmental perturbation will reveal multiple, novel, and diverse biochemical networks that respond to chemical exposure. The proposed integrated set of experiments will enable the discovery and validation of adverse outcome pathways through three specific aims.
Aim 1 will evaluate study designs for animal testing with genetically diverse DO mice including sample size requirements for toxicity evaluation. G x E genetic loci will be mapped and incorporated into predictive computational models, and testable hypotheses will be proposed for validation.
Aim 2 will conduct a parallel, population-level arsenic exposure study of in vitro primary cell cultures to identify genetic factors underlying susceptibility and resistance using physiologically informative cellular phenotypes. The data generated in the in vitro arsenic exposure study will allow determination of the extent to which cytotoxicity, genotoxicity, and oxidative stress in cellular assays are physiologically informative for the discovery of molecular pathways that drive susceptibility and/or response in the whole organism.
Aim 3 will identify key mechanisms in renal arsenic toxicity. This study will generate a model for the effect of arsenic exposure on the kidney to predict outcomes that are contingent on genetic background. Collectively, this new approach to toxicology using DO mice will address fundamental biological questions by combining chemical interventions with genetic variation. It will establish causal pathways across multiple levels of molecular and physiological outcomes to yield results with relevance to clinical translation.

Public Health Relevance

Regulatory toxicology seeks to create safety thresholds for chemical exposure in humans based on experimental studies in animals, but results of such studies may not accurately predict human sensitivity because they fail to accommodate the genetic diversity that exists across human populations. We will use population-based, genetically diverse mice to study the complex interplay between genetic variation and environmental factors that determine cellular and organismal responses to arsenic exposure. Through a novel statistical analysis of our data, we will account for individual genetic variation and provide a data-driven model that can be translated to risk assessment for human chemical exposure. !

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
5R01ES029916-03
Application #
10093045
Study Section
Special Emphasis Panel (ZES1)
Program Officer
Mcallister, Kimberly A
Project Start
2019-02-01
Project End
2024-01-31
Budget Start
2021-02-01
Budget End
2022-01-31
Support Year
3
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Jackson Laboratory
Department
Type
DUNS #
042140483
City
Bar Harbor
State
ME
Country
United States
Zip Code
04609