This administrative supplement request through the Office of Dietary Supplements (PA-16-319) takes advantage of the expertise of one member of the multi-PI group of scientists on the Parent Award ?Phenotyping embryonic lethal knockout mice with neural crest and neural tube defects?. The Niswander lab has extensive experience in the detailed characterization of embryonic mutations that disrupt neural tube closure leading to neural tube defects (NTDs) like spina bifida. NTDs are a common birth defects (1 in 1000 births) and the mouse represents an excellent model of human neural tube closure and has led to the discovery of numerous genes that control neural tube development and that are now associated with human NTDs. The original goal in Aim 2 under Dr. Niswander?s direction is to delve deeply into the cellular and molecular mechanisms responsible for defects in neural tube formation in mice arising from the Knock-Out Mouse Project (KOMP2) to better understand the genetic networks that orchestrate neural tube closure. Folate deficiency has long been associated with increased risk for NTD-affected pregnancies. Recommendations to increase folate levels in women of child-bearing age and subsequent fortification of flour with folic acid have decreased the incidence of NTDs by nearly 30%. Yet, still very little is known as to how folic acid acts to decrease the NTD incidence. Moreover, the few studies in mice suggest that there is a range of responses to folic acid fortification, depending on the genetic risk factors, from beneficial to no response to detrimental ? highlighting the importance of understanding which genetic variants and perhaps molecular pathways are favorably influenced by folic acid fortification. Furthermore, despite the decades-long folic acid fortification campaign, the possible consequences of long-term and potential epigenetic changes on NTD risks and mechanisms have not been studied. The request for an administrative supplement will allow these outstanding questions to be addressed. The requested experiments take advantage of two novel mutant mouse lines characterized in the parent grant, one that results in spina bifida and the other in cranial NTD, in conjunction with mouse lines that show altered NTD risk dependent on the dose and duration of FA exposure. Within two new Aims, the goals here are to gain insight into the phenotypic and molecular changes induced by folic acid fortification over multiple generations in NTD models. The ultimate goal is to discover expression biomarkers that may help guide individualized recommendations for optimal outcomes.

Public Health Relevance

Neural tube defects (NTDs) like spina bifida are devastating birth defects. One measure that has helped to prevent NTDs is the consumption of folic acid. However it is clear that not all NTDs are prevented by folic acid so the question remains as to whether there are particular genes and pathways that may benefit by other treatments. The goal of this proposal is to better understand how folic acid acts during neural development and to discover biomarkers that can help predict risk and perhaps alternate strategies for optimal outcomes.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
3R01HD081562-04S1
Application #
9470089
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Henken, Deborah B
Project Start
2014-09-20
Project End
2018-06-30
Budget Start
2017-07-22
Budget End
2018-06-30
Support Year
4
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Colorado Denver
Department
Dentistry
Type
Schools of Dentistry/Oral Hygn
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Van Otterloo, Eric; Williams, Trevor; Artinger, Kristin Bruk (2016) The old and new face of craniofacial research: How animal models inform human craniofacial genetic and clinical data. Dev Biol 415:171-187
Van Otterloo, Eric; Feng, Weiguo; Jones, Kenneth L et al. (2016) MEMO1 drives cranial endochondral ossification and palatogenesis. Dev Biol 415:278-295
Yang, Mei; Yang, Si-Lu; Herrlinger, Stephanie et al. (2015) Lin28 promotes the proliferative capacity of neural progenitor cells in brain development. Development 142:1616-27