The present proposal seeks to address the molecular regulation of the calcium-sensitive potassium (BKCa) channel, an ion channel that is ubiquitously expressed in smooth muscle cells (SMC) and determines, to a meaningful degree, vascular SMC tone. Prior work from our lab has demonstrated a developmentally regulated and biologically imperative role for the BKCa channel in pulmonary artery (PA) SMC, as physiologic stimuli such as an acute increase in oxygenation, ventilation, and nitric oxide cause perinatal pulmonary vasodilation, at least in part, through activation of the BKCa channel. The gating characteristics of the channel are modified by several subunits, with the most widely expressed, the ?1 subunit, enhancing calcium sensitivity of the channel and thereby dampening the response to constrictor stimuli. ?1 subunit expression has physiologic implications as gain-of-function polymorphisms in the KCNMB1 gene protect against diastolic hypertension, and absence of the ?1 subunit in mice causes hypertension. The subunit likely has implications for airways reactivity as a specific polymorphism in African Americans increases the risk for severe asthma. How ?1 subunit expression is regulated and whether it plays a role in determining pulmonary vascular tone remains unexplored. Based on compelling preliminary evidence demonstrating that hypoxia induces an increase in ?1 expression that is mediated by hypoxia-inducible factor-1? in PASMC, we formulated the overall hypothesis that in PASMC: (i) the capacity for hypoxia to increase KCNMB1 expression;and (ii) normoxic KCNMB1 expression, are developmentally regulated. In three closely related specific aims, we seek to rigorously test the working hypothesis by demonstrating in Aim 1 that loss of the ?1 subunit accentuates hypoxic pulmonary hypertension in a murine model.
In Aim 2, we plan to elucidate the transcriptional regulation that accounts for the hypoxic induction of KCNMB1. Finally, in Aim 3, we plan to address the potential that either epigenetic factors or specific micro-RNA molecules constrain KCNMB1 expression with aging. The studies to be performed will clearly establish the importance of ?1 subunit in the regulation of pulmonary vascular tone and hold the promise of providing a novel target that might be exploited to address diseases wherein pulmonary vascular, or potentially even airway, SMC tone is pathologically increased.

Public Health Relevance

The mass and contractile state of muscle cells that encircle the blood vessels of the lungs are increased in diseases wherein the blood pressure of the lungs is elevated. If these cells do not relax properly following the birth of infants, life-threatning illness results. The present application endeavors to identify a new strategy to decrease the tone in these cells, an approach that may be more broadly applicable to diseases such as asthma and high pressure.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
2R01HL070628-05A1
Application #
8288668
Study Section
Special Emphasis Panel (ZRG1-CVRS-G (02))
Program Officer
Lin, Sara
Project Start
2002-07-01
Project End
2016-04-30
Budget Start
2012-05-15
Budget End
2013-04-30
Support Year
5
Fiscal Year
2012
Total Cost
$478,389
Indirect Cost
$176,630
Name
Stanford University
Department
Pediatrics
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Kim, Francis Y; Barnes, Elizabeth A; Ying, Lihua et al. (2015) Pulmonary artery smooth muscle cell endothelin-1 expression modulates the pulmonary vascular response to chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 308:L368-77
Ying, Lihua; Becard, Margaux; Lyell, Deirdre et al. (2015) The transient receptor potential vanilloid 4 channel modulates uterine tone during pregnancy. Sci Transl Med 7:319ra204
De Vlaminck, Iwijn; Khush, Kiran K; Strehl, Calvin et al. (2013) Temporal response of the human virome to immunosuppression and antiviral therapy. Cell 155:1178-87
Kim, Yu-Mee; Barnes, Elizabeth A; Alvira, Cristina M et al. (2013) Hypoxia-inducible factor-1? in pulmonary artery smooth muscle cells lowers vascular tone by decreasing myosin light chain phosphorylation. Circ Res 112:1230-3
Cornfield, David N (2013) Acute respiratory distress syndrome in children: physiology and management. Curr Opin Pediatr 25:338-43
Ahn, Yong-Tae; Kim, Yu-Mee; Adams, Eloa et al. (2012) Hypoxia-inducible factor-1ýý regulates KCNMB1 expression in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 302:L352-9
Delaney, Cassidy; Cornfield, David N (2012) Risk factors for persistent pulmonary hypertension of the newborn. Pulm Circ 2:15-20
Iosef, Cristiana; Alastalo, Tero-Pekka; Hou, Yanli et al. (2012) Inhibiting NF-?B in the developing lung disrupts angiogenesis and alveolarization. Am J Physiol Lung Cell Mol Physiol 302:L1023-36
Alvira, Cristina M; Umesh, Anita; Husted, Cristiana et al. (2012) Voltage-dependent anion channel-2 interaction with nitric oxide synthase enhances pulmonary artery endothelial cell nitric oxide production. Am J Respir Cell Mol Biol 47:669-78
Blainey, Paul C; Milla, Carlos E; Cornfield, David N et al. (2012) Quantitative analysis of the human airway microbial ecology reveals a pervasive signature for cystic fibrosis. Sci Transl Med 4:153ra130

Showing the most recent 10 out of 20 publications