The technique of hypothermic circulatory arrest (HCA) is an established neuroprotective strategy allowing complex repairs of the thoracic aorta and congenital cardiac malformations. Despite its utility in clinical medicine, HCA is not without significant neurological sequelae, including intellectual and neuropsychomotor impairment, seizures, choreoathetosis, delayed development, and stroke. This application builds on our pioneering work delineating critical neurochemical mechanisms of excitotoxicity and neuroinflammation in a translational model of brain injury from HCA that is directly relevant to the support techniques currently used daily in patients undergoing complex heart and aortic surgery. We previously showed that valproic acid (VPA) can mitigate excitotoxic injury and that N-acetylcysteine (NAC) can attenuate neuroinflammation. However, the clinical use of VPA is limited by a severe metabolic acidosis, while the clinical use of NAC is limited by poor blood-brain barrier (BBB) penetration. We recently demonstrated that that dendrimer-drug conjugates can penetrate the BBB in this translational model of HCA and then home-in on neurons and microglia in areas of the brain that are damaged. We are thus in a unique position to evaluate this platform for targeted drug delivery to the injured brain. We hypothesize that dendrimer-drug conjugates can target delivery across the BBB selectively to injured neurons and microglia, resulting in improved efficacy at lower doses with reduced side effects, compared to systemic injections of unconjugated compounds.
Our specific aims are: 1) To determine dose-response relationships for systemic administration of VPA or NAC monotherapy and for dendrimer-coupled VPA or NAC (D-VPA or D-NAC) monotherapy; 2) To assess the efficacy of combined VPA and NAC therapy on neurological injury after HCA; and 3) To assess the efficacy of targeted, combined D-VPA and D-NAC therapy on neurological injury after HCA. Evaluation of dendrimer-based therapies in a clinically relevant large-animal model will provide important information for translation to patients.

Public Health Relevance

Neurological injury remains a major and persistent problem in patients undergoing complex heart and aortic surgery, particularly after hypothermic circulatory arrest (HCA). We have used a translational model to show that excitotoxicity and neuroinflammation are important mechanisms of brain injury after HCA. In this project, we use clinically approved drugs to target these pathways and we test a novel method for drug delivery that may provide better neuroprotection during HCA at lower doses with fewer serious side effects.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL091541-22
Application #
9084604
Study Section
Bioengineering, Technology and Surgical Sciences Study Section (BTSS)
Program Officer
Miller, Marissa A
Project Start
1992-12-01
Project End
2018-06-30
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
22
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Surgery
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21205
Hinkle, Jared T; Perepezko, Kate; Bakker, Catherine C et al. (2018) Domain-specific cognitive impairment in non-demented Parkinson's disease psychosis. Int J Geriatr Psychiatry 33:e131-e139
Zhang, Fan; Trent Magruder, J; Lin, Yi-An et al. (2017) Generation-6 hydroxyl PAMAM dendrimers improve CNS penetration from intravenous administration in a large animal brain injury model. J Control Release 249:173-182
Grimm, Joshua C; Magruder, J Trent; Wilson, Mary A et al. (2016) Nanotechnology Approaches to Targeting Inflammation and Excitotoxicity in a CanineĀ ModelĀ of Hypothermic Circulatory Arrest-Induced Brain Injury. Ann Thorac Surg 102:743-750
Mills, Kelly A; Mari, Zoltan; Bakker, Catherine et al. (2016) Gait function and locus coeruleus Lewy body pathology in 51 Parkinson's disease patients. Parkinsonism Relat Disord 33:102-106
Mishra, Manoj K; Beaty, Claude A; Lesniak, Wojciech G et al. (2014) Dendrimer brain uptake and targeted therapy for brain injury in a large animal model of hypothermic circulatory arrest. ACS Nano 8:2134-47
Blue, Mary E; Wilson, Mary Ann; Beaty, Claude A et al. (2014) Brain injury in canine models of cardiac surgery. J Neuropathol Exp Neurol 73:1134-43
Beaty, Claude A; Arnaoutakis, George J; Grega, Maura A et al. (2013) The role of head computed tomography imaging in the evaluation of postoperative neurologic deficits in cardiac surgery patients. Ann Thorac Surg 95:548-54
Arnaoutakis, George J; George, Timothy J; Wang, Kevin K et al. (2011) Serum levels of neuron-specific ubiquitin carboxyl-terminal esterase-L1 predict brain injury in a canine model of hypothermic circulatory arrest. J Thorac Cardiovasc Surg 142:902-910.e1
Allen, Jeremiah G; Weiss, Eric S; Wilson, Mary Ann et al. (2010) Hawley H. Seiler Resident Award. Transcriptional profile of brain injury in hypothermic circulatory arrest and cardiopulmonary bypass. Ann Thorac Surg 89:1965-71