Cannabinoid (CB) type-1 receptors (CB1) in the central nervous system (CNS) mediate the psychoactive effects of delta-9-tetrahydrocannabinol, the major active constituent in marijuana. CB1 receptors also mediate many effects of the lipid-derived endogenous cannabinoids (endocannabinoids). This endocannabinoid system plays important roles in regulating motor activity and coordination, short-term memory, pain perception, metabolic homeostasis and drug reward and craving. CB1 receptors can be regulated by post-translational modification and protein-protein interactions, which can alter functional activity, cellular localization and expression levels of these receptors. These processes play a role in limiting the duration of action of CB agonists and in the development of tolerance or dependence upon repeated administration of CB agonists. The proposed project will investigate the function of a newly discovered CB receptor-interacting protein, CRIP1a, which binds to the distal C-terminus of CB1 receptors and attenuates constitutive (basal) activity of these receptors. Preliminary findings also suggest that CRIP1a can alter agonist-induced CB1 signaling in a ligand- and signaling pathway-dependent manner. Preliminary data indicate that CRIP1a can inhibit agonist- induced downregulation or desensitization of CB1 receptors, and that CRIP1a is co-localized with CB1 receptors, particularly in CNS glutamatergic neurons. The following specific aims are proposed to investigate the function of CRIP1a: 1) develop novel cell lines and siRNA constructs as tools to determine the effects of CRIP1a on acute and chronic activation of CB1 receptors and 2) develop a CRIP1a knockout mouse line as a novel tool to investigate effects of CRIP1a on physiological function, behavior and CB pharmacology in vivo. Biochemical and cell imaging approaches will be used to determine effects of co-expression or siRNA-mediated knockdown of CRIP1a in cell models on CB1 receptor-mediated G-protein association (co-immunoprecipitation) and activation (GTP3S binding), and interaction with the regulatory protein 2-arrestin. Effects of CRIP1a on CB1 receptor desensitization, downregulation and internalization will then be examined in these cell models. A CRIP1a gene knockout mouse line will be created using a """"""""flox"""""""" approach. Knockout mice will be subjected to basic health assessment and in vivo phenotyping, followed by determination of effects of the knockout on the pharmacological potency of CB agonists in tests of hypothermia, hypolocomotion, catalepsy and antinociception. Anatomical and biochemical studies will then be conducted to determine effects of CRIP1a knockout on CB1 receptor levels, G-protein activation and cellular localization in the CNS. These studies will provide valuable data concerning the role of CRIP1a in the regulation of CB1 receptor-mediated signal transduction associated with functional responses in animals. This work will provide novel target leads for development of drugs that selectively regulate the activity of CB1 receptors for the treatment of drug addiction and other diseases in which the endocannabinoid system is a critical modulatory component.

Public Health Relevance

CB1 cannabinoid receptors mediate many of the effects of marijuana and interact with naturally occurring marijuana-like substances in the brain. This system is important in the regulation of appetite, pain perception, memory, movement and coordination, and seems to play a role in the rewarding effects of several addictive drugs. The proposed project would study a newly discovered protein, called CRIP1a, which interacts with CB1 receptors and appears to modulate their function. These studies will investigate the role of CRIP1a in the regulation of CB1 receptors using genetically modified cultured cell lines and mice in which the CRIP1a gene has been inactivated, to increase our understanding of the effects of marijuana in the brain and perhaps provide a novel target for development of drugs that selectively regulate the activity of CB1 receptors.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21DA025321-01A1
Application #
7667661
Study Section
Special Emphasis Panel (ZRG1-MDCN-N (03))
Program Officer
Pollock, Jonathan D
Project Start
2009-04-10
Project End
2011-02-27
Budget Start
2009-04-10
Budget End
2010-02-27
Support Year
1
Fiscal Year
2009
Total Cost
$235,719
Indirect Cost
Name
Virginia Commonwealth University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
105300446
City
Richmond
State
VA
Country
United States
Zip Code
23298
Singh, Pratishtha; Ganjiwale, Anjali; Howlett, Allyn C et al. (2017) In silico interaction analysis of cannabinoid receptor interacting protein 1b (CRIP1b) - CB1 cannabinoid receptor. J Mol Graph Model 77:311-321
Blume, Lawrence C; Patten, Theresa; Eldeeb, Khalil et al. (2017) Cannabinoid Receptor Interacting Protein 1a Competition with ?-Arrestin for CB1 Receptor Binding Sites. Mol Pharmacol 91:75-86
Blume, Lawrence C; Leone-Kabler, Sandra; Luessen, Deborah J et al. (2016) Cannabinoid receptor interacting protein suppresses agonist-driven CB1 receptor internalization and regulates receptor replenishment in an agonist-biased manner. J Neurochem 139:396-407
Smith, Tricia H; Blume, Lawrence C; Straiker, Alex et al. (2015) Cannabinoid receptor-interacting protein 1a modulates CB1 receptor signaling and regulation. Mol Pharmacol 87:747-65
Blume, Lawrence C; Eldeeb, Khalil; Bass, Caroline E et al. (2015) Cannabinoid receptor interacting protein (CRIP1a) attenuates CB1R signaling in neuronal cells. Cell Signal 27:716-726
Ahmed, Mostafa H; Kellogg, Glen E; Selley, Dana E et al. (2014) Predicting the molecular interactions of CRIP1a-cannabinoid 1 receptor with integrated molecular modeling approaches. Bioorg Med Chem Lett 24:1158-65
Lazenka, Matthew F; Selley, Dana E; Sim-Selley, Laura J (2014) ?FosB induction correlates inversely with CB? receptor desensitization in a brain region-dependent manner following repeated ??-THC administration. Neuropharmacology 77:224-33
Blume, Lawrence C; Bass, Caroline E; Childers, Steven R et al. (2013) Striatal CB1 and D2 receptors regulate expression of each other, CRIP1A and ? opioid systems. J Neurochem 124:808-20
Nguyen, Peter T; Schmid, Cullen L; Raehal, Kirsten M et al. (2012) ?-arrestin2 regulates cannabinoid CB1 receptor signaling and adaptation in a central nervous system region-dependent manner. Biol Psychiatry 71:714-24
Smith, Tricia H; Sim-Selley, Laura J; Selley, Dana E (2010) Cannabinoid CB1 receptor-interacting proteins: novel targets for central nervous system drug discovery? Br J Pharmacol 160:454-66