Novel scientific contributions that would come from the exciting exploration of aquatic experimental models that each have evolved new ways to survive within exceedingly varied and stressful physical and biological environments is our foremost contention for the sequencing and assembly of the genomes of the species listed in this proposal. Many long-standing aquatic research models have notable and noble places in the history of our understanding of human disease. In addition, distinct attributes of these models provided plasticity in experimental design and a breadth of discovery needed to light the fires of creative inquiry. Such has been the historical roles for non-mammalian and aquatic animal models. However, the power of genomics over the past decade has revolutionized our understanding of the molecular basis of human disease. Unfortunately, due to high costs associated with the development of genomic resources, this advance has been limited to only a handful of popular and established animal models. Naturally, concurrent with the initial rise of genomics capabilities for a few model organisms there came reduced interest in support for comparative biological scientific inquiry that employed species that did not possess such resources. Previously we had organized a meeting, entitled """"""""Aquatic Models for Human Disease"""""""", to gather a broad community of aquatic researchers seeking to gain input toward obtaining a list of species that reflect a broad diversity of species-specific biology. More importantly the focus of this discussion was to choose species that would provide a means to explore the biology that indirectly reflects a particular human disease. From this discussion and a genomics workshop held prior to the meeting, we have compiled a priority list of species with model organism proven capabilities (Table 1). Herein we describe our plans to generate genome resources for nine aquatic species that will empower scientists to test novel hypotheses for a wide array of human disease pathway origins. The great promise to forward our understanding of human disease using these proposed aquatic genomes is now warranted.

Public Health Relevance

There is a real need to continue to develop and understand non-human models of human disease. The natural course of a disease in a human may take years to manifest symptoms;to overcome this problem, investigators have developed experimentally tractable models employing organisms that can mimic a disease-in a period of months to a few years and with genetic power. We have thus far not established the resources needed to take advantage of the aquatic species having unique attributes that mimic a wide array of human diseases.

Agency
National Institute of Health (NIH)
Institute
Office of The Director, National Institutes of Health (OD)
Type
Resource-Related Research Projects (R24)
Project #
8R24OD011198-02
Application #
8333439
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Program Officer
Chang, Michael
Project Start
2011-09-15
Project End
2014-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
2
Fiscal Year
2012
Total Cost
$380,073
Indirect Cost
$77,948
Name
Washington University
Department
Genetics
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Franchini, Paolo; Jones, Julia C; Xiong, Peiwen et al. (2018) Long-term experimental hybridisation results in the evolution of a new sex chromosome in swordtail fish. Nat Commun 9:5136
Warren, Wesley C; García-Pérez, Raquel; Xu, Sen et al. (2018) Clonal polymorphism and high heterozygosity in the celibate genome of the Amazon molly. Nat Ecol Evol 2:669-679
Herman, Adam; Brandvain, Yaniv; Weagley, James et al. (2018) The role of gene flow in rapid and repeated evolution of cave-related traits in Mexican tetra, Astyanax mexicanus. Mol Ecol 27:4397-4416
Lu, Yuan; Boswell, Mikki; Boswell, William et al. (2017) Molecular genetic analysis of the melanoma regulatory locus in Xiphophorus interspecies hybrids. Mol Carcinog 56:1935-1944
Reid, Noah M; Jackson, Craig E; Gilbert, Don et al. (2017) The landscape of extreme genomic variation in the highly adaptable Atlantic killifish. Genome Biol Evol :
Passow, Courtney N; Henpita, Chathurika; Shaw, Jennifer H et al. (2017) The roles of plasticity and evolutionary change in shaping gene expression variation in natural populations of extremophile fish. Mol Ecol 26:6384-6399
Warren, Wesley C; Kuderna, Lukas; Alexander, Alana et al. (2017) The Novel Evolution of the Sperm Whale Genome. Genome Biol Evol 9:3260-3264
Lencer, Ezra S; Warren, Wesley C; Harrison, Richard et al. (2017) The Cyprinodon variegatus genome reveals gene expression changes underlying differences in skull morphology among closely related species. BMC Genomics 18:424
Reid, Noah M; Proestou, Dina A; Clark, Bryan W et al. (2016) The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science 354:1305-1308
Schauer, Kevin L; LeMoine, Christophe M R; Pelin, Adrian et al. (2016) A proteinaceous organic matrix regulates carbonate mineral production in the marine teleost intestine. Sci Rep 6:34494

Showing the most recent 10 out of 19 publications