This proposal describes a research plan for the development of a new technology for nanochannel pumping using a technique pioneered by our research team called Field-Effect Flow Control (FEFC). This technique is based on a modification of standard electronsmotic flow (EOF), with modulation of the flow velocity provided by a secondary gate voltage independent from the lengthwise EOF electric field. The technology allows for direct and independent control of flow within large numbers of interconnected nanochannels, and is expected to impact a broad range of bioanalytical instrumentation. The proposed nanofluidic FEFC pumping technology is a novel approach which will provide nanochannel flow control with specific advantages over other techniques, namely (i) independent operation of multiple pumping elements, (ii) compatibility with standard polymer nanofluidic technologies, (iii) elimination of pump leakage for 100% pump efficiency, (iv) very large scale integration of nanochannel pumping elements for complex nanofluidic systems, and (v) simple fabrication and low cost. The overall goal of this Phase I project is to demonstrate the feasibility of polymer FEFC nanopumping technology, and evaluate its relative merits compared to alternate methods of nanochannel flow control. ? ? Practical tools for the analysis of single molecules and other novel bioanalytical instrumentation are anticipated to result from advances in flow control for nanofluidic systems. One example of the potential for this technology is in the sequencing of single strands of DNA by pumping individual molecules through a nanoscale channel, with integrated electrodes interrogating the conductivity of each base (1). Other applications of great interest include nanofluidic devices to mimic biological processes, and to carry out single-molecule chemical reactions.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Small Business Innovation Research Grants (SBIR) - Phase I (R43)
Project #
5R43EB000453-02
Application #
6617886
Study Section
Special Emphasis Panel (ZRG1-SSS-Y (10))
Program Officer
Moy, Peter
Project Start
2002-08-01
Project End
2005-01-31
Budget Start
2003-08-01
Budget End
2005-01-31
Support Year
2
Fiscal Year
2003
Total Cost
$187,250
Indirect Cost
Name
Calibrant Biosystems, Inc.
Department
Type
DUNS #
616684036
City
Gaithersburg
State
MD
Country
United States
Zip Code
20878
Sivanesan, Ponniah; Okamoto, Kenji; English, Douglas et al. (2005) Polymer nanochannels fabricated by thermomechanical deformation for single-molecule analysis. Anal Chem 77:2252-8