Breast cancer is a complex disease associated with specific morphological and clinical features. Significant health disparity and high mortality rate is reported in African American (AA) patients, who suffer from unique and highly aggressive breast tumors. AA triple negative (TN) breast cancer patients suffer worse outcomes to chemotherapy compared with Caucasian women. Aggressive TN breast tumors contain poorly differentiated cells and express embryonic stem cell specific gene sets. These poorly differentiated mammary cancer stem cells (MCSCs) are the most tumorigenic cell types that drive initiation and progression of breast cancers. RAS/Raf/ERK1/2 signaling cascade has been found to promote every aspect of breast tumor progression including aggressive behavior like high angiogenesis and motility. We hypothesize that """"""""Mammary cancer stem cells drive aggressive TN breast tumors in AA women through sustained ERK1/2 signaling."""""""" We will test this hypothesis with the following Specific Aims: 1) Establish whether mammary cancer stem cells from AA TN breast tumors form aggressive xenografts in nude mice. 2) Examine whether sustained ERK1/2 increases aggressive behavior of mammary cancer stem cells enriched mammospheres from AA TN breast tumors. 3) Examine whether inhibition of ERK1/2 signaling is effective in attenuating aggressive properties of mammary cancer stem cells from AA TN breast tumors. Fluorescence-activated cell sorting (FACS) will be used to enrich MCSCs (Lin-/CD44+/CD24- /ALDH1+) from TN AA and Caucasian breast tumors, which will injected into the nude mice to form xenotransplants. These xenografts will be used to compare tumor volume, expression of angiogenesis stimulating factors (VEGF, CD31, MMP9), and motility of cells (Boyden Chamber Assay) between the two groups. MCSCs will also be enriched as mammospheres and pERK1/2-mediated effect on cell motility and expression of angiogenesis stimulating factors will be analyzed. ERK1/2 signaling will be attenuated in MCSCs by Nup153 shRNA and its effect on tumor promoting behavior will be analyzed both in vitro and in vivo. Increased understanding of the critical role of ERK1/2 signaling in MCSCs from AA patients and may provide novel targets for therapeutic drug design.

Public Health Relevance

This project will test the effectiveness of phospho-ERK1/2 targeting in human mammary cancer stem cells isolated from African American and Caucasian patients. Mammary cancer stem cells will be isolated from the discarded fresh tissue samples from patient and their ability to form tumors in Nude mice will be tested before and after inhibition of ERK1/2 signaling. Our studies if validated by our preliminary data may provide unique approach to clinical practice by designing therapeutic drugs to specifically target pERK1/2 in mammary cancer stem cells, which are highly stable and provide key oncogenic trigger.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Enhancement Award (SC1)
Project #
5SC1CA165865-04
Application #
8677817
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Vallejo-Estrada, Yolanda
Project Start
2011-07-11
Project End
2016-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
4
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Charles R. Drew University of Med & Sci
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
City
Los Angeles
State
CA
Country
United States
Zip Code
90059
Singh, Rajan; Pervin, Shehla; Lee, Se-Jin et al. (2018) Metabolic profiling of follistatin overexpression: a novel therapeutic strategy for metabolic diseases. Diabetes Metab Syndr Obes 11:65-84
Pervin, Shehla; Singh, Vineeta; Tucker, Alexandria et al. (2017) Modulation of transforming growth factor-?/follistatin signaling and white adipose browning: therapeutic implications for obesity related disorders. Horm Mol Biol Clin Investig 31:
Singh, Rajan; Braga, Melissa; Reddy, Srinivasa T et al. (2017) Follistatin Targets Distinct Pathways To Promote Brown Adipocyte Characteristics in Brown and White Adipose Tissues. Endocrinology 158:1217-1230
Singh, Rajan; Parveen, Meher; Basgen, John M et al. (2016) Increased Expression of Beige/Brown Adipose Markers from Host and Breast Cancer Cells Influence Xenograft Formation in Mice. Mol Cancer Res 14:78-92
Howard, Carolyn B; McDowell, Roderick; Feleke, Kidus et al. (2016) Chemotherapeutic Vulnerability of Triple-negative Breast Cancer Cell-derived Tumors to Pretreatment with Vernonia amygdalina Aqueous Extracts. Anticancer Res 36:3933-43
Martinez, Luis; Thames, Easter; Kim, Jinna et al. (2016) Increased sensitivity of African American triple negative breast cancer cells to nitric oxide-induced mitochondria-mediated apoptosis. BMC Cancer 16:559
Howard, Carolyn Bingham; Johnson, William K; Pervin, Shehla et al. (2015) Recent perspectives on the anticancer properties of aqueous extracts of NigerianVernonia amygdalina. Botanics 5:65-76
Singh, Rajan; Braga, Melissa; Pervin, Shehla (2014) Regulation of brown adipocyte metabolism by myostatin/follistatin signaling. Front Cell Dev Biol 2:60
Braga, Melissa; Reddy, Srinivasa T; Vergnes, Laurent et al. (2014) Follistatin promotes adipocyte differentiation, browning, and energy metabolism. J Lipid Res 55:375-84
Braga, Melissa; Pervin, Shehla; Norris, Keith et al. (2013) Inhibition of in vitro and in vivo brown fat differentiation program by myostatin. Obesity (Silver Spring) 21:1180-8

Showing the most recent 10 out of 14 publications