B. burgdorferi is maintained in nature in two very distinct environments, the Ixodes tick and mammalian hosts. Its ability to adapt and survive in these very different environments is attributed to its ability to sense changes in temperature, pH, cell density, oxygen and/or exposure to host factors and alter gene expression accordingly. The capability of bacteria to regulate transcription initiation allows for the coordinated expression of genes at appropriate times. Previous reports have demonstrated that central to the regulation of these responses are SigmaS (encoded by rpoS) and Sigma54 (encoded by rpoN also known as ntrA). In addition, Sigma54-dependent expression of SigmaS is responsible for the expression of key virulence factors [e.g., outer surface protein C (OspC), OspA and decorin-binding protein C (DbpC)] required for infectivity and transmission during the infective cycle. ? ? Promoters recognized by Sigma54-RNA polymerase holoenzyme (Sigma54-holoenzyme) have well conserved GG and GC doublets at Sigma4 and Sigma12 positions, respectively, relative to the transcriptional start site, instead of the typical -35/-10 boxes observed in Sigma70 class promoters. Universally, Sigma54-dependent transcription has been shown to require activator proteins, many of which are response regulators of two-component systems. In most cases, Sigma54-activator proteins bind enhancer-like elements located 100-200 bp upstream of the transcriptional start site of the promoter. Analysis of the genome of B. burgdorferi identified Rrp2 (BBO763) as a predicted Sigma54-dependent activator consisting of an N-terminal receiver domain, a central ATPase domain and a C-terminal DNA-binding domain.? ? The activities of activators of Sigma54-holoenzyme are regulated in response to environmental signals. Many of the activators of #m54-holoenzyme are response regulators in two-component regulatory systems, and phosphorylation of these proteins results in their activation. These response regulators are phosphorylated by their cognate protein histidine kinases in response to an environmental signal. Once phosphorylated, the response regulator activates transcription of other genes. An activator of Sigma54-holoenzyme in B. burgdorferi, Rrp2 (encoded by rrp2), is also a response regulator of a two-component system and rrp2 is in an operon with a gene encoding its cognate protein histidine kinase, hk2 (encoded by hk2). The Sigma54-dependent activation of SigmaS requires response regulator, Rrp2 (BB0763). QRT-PCR experiments on reporter cat constructs in B. burgdorferi indicated that DNA sequences upstream of the Sigma54-dependent rpoS promoter were not needed by Rrp2 to activate transcription of rpoS. Further experiments showed that rpoN is required for stationary phase expression of rpoS in B. burgdorferi, but that the histidine kinase Hk2 is not absolutely essential. This suggested that another histidine kinase or small molecular weight phosphate donors could activate Rrp2, providing multiple signaling pathways for modulating expression of the Sigma54/SigmaS regulon in B. burgdorferi). We have also shown that rpoS has an additional Sogma54-independent promoter indicating that there are addition ways to regulate rpoS expression. The focus of this aspect of our research is to characterize a regulatory cascade involving SigmaS and Sigma54 in B. burgdorferi and to determine how this cascade is related to survival of the bacterium in the tick midgut and in a human host.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Intramural Research (Z01)
Project #
1Z01AI000906-05
Application #
7303903
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
2006
Total Cost
Indirect Cost
Name
Niaid Extramural Activities
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Burtnick, Mary N; Downey, Jennifer S; Brett, Paul J et al. (2007) Insights into the complex regulation of rpoS in Borrelia burgdorferi. Mol Microbiol 65:277-93
Jewett, Mollie W; Lawrence, Kevin; Bestor, Aaron C et al. (2007) The critical role of the linear plasmid lp36 in the infectious cycle of Borrelia burgdorferi. Mol Microbiol 64:1358-74
Nguyen, Kiet T; Wu, Jen-Chieh; Boylan, Julie A et al. (2007) Zinc is the metal cofactor of Borrelia burgdorferi peptide deformylase. Arch Biochem Biophys 468:217-25
Jackson, Charlene R; Boylan, Julie A; Frye, Jonathan G et al. (2007) Evidence of a conjugal erythromycin resistance element in the Lyme disease spirochete Borrelia burgdorferi. Int J Antimicrob Agents 30:496-504
Pettersson, Jonas; Schrumpf, Merry E; Raffel, Sandra J et al. (2007) Purine salvage pathways among Borrelia species. Infect Immun 75:3877-84
Grimm, Dorothee; Tilly, Kit; Bueschel, Dawn M et al. (2005) Defining plasmids required by Borrelia burgdorferi for colonization of tick vector Ixodes scapularis (Acari: Ixodidae). J Med Entomol 42:676-84
Fisher, Mark A; Grimm, Dorothee; Henion, Amy K et al. (2005) Borrelia burgdorferi sigma54 is required for mammalian infection and vector transmission but not for tick colonization. Proc Natl Acad Sci U S A 102:5162-7
Seshu, J; Boylan, Julie A; Gherardini, Frank C et al. (2004) Dissolved oxygen levels alter gene expression and antigen profiles in Borrelia burgdorferi. Infect Immun 72:1580-6
Chenoweth, M R; Somerville, G A; Krause, D C et al. (2004) Growth characteristics of Bartonella henselae in a novel liquid medium: primary isolation, growth-phase-dependent phage induction, and metabolic studies. Appl Environ Microbiol 70:656-63
Chenoweth, Matthew R; Greene, Craig E; Krause, Duncan C et al. (2004) Predominant outer membrane antigens of Bartonella henselae. Infect Immun 72:3097-105

Showing the most recent 10 out of 14 publications