Hepatocellular carcinoma (HCC) is considered to be a terminally-ill disease and currently, there is little progress toward the discovery of efficient therapies leading to regression. This is due largely to the lack of a method for early diagnosis and the lack of information on the phenotypic changes associated with the development of HCC. Changes in gene expression during the genesis of HCC are largely unknown (www.ncbi.nlm.nih.gov/ncicgap/). Our goals are to identify genes expressed during the development of HCC and to discover new genes critical for viral hepatitis-mediated HCC. These studies will contribute to the establishment of novel markers with potential diagnostic and prognostic value, and analysis of these genes would provide further understanding of the genesis of liver cancer and provide further insights into designing strategies for HCC-directed molecular therapy. We have taken two approaches, namely, Serial Analysis of Gene Expression (SAGE) and cDNA microarray, to explore potential cellular genes that are expressed abnormally in primary human hepatocytes infected with the two viral hepatitis oncoproteins, HBx or HC-core, and in liver samples from chronic active hepatitis patients or HCC patients that differ in the status of HBV or HCV. In addition, we are comparing gene expression profiles between primary HCC and metastatic HCC. Infection of normal hepatocytes with HBx and HC-core is achieved by a replication-defective adenoviral vector. Using SAGE, we have constructed a library derived from primary human hepatocytes infected with HBx. Among over 10,000 transcripts (more than 750 unique genes) analyzed, 32 genes were upregulated at least 3-fold and 40 genes were downregulated in at least 3-fold by HBx. Sequence search indicates that some of these transcripts are known genes while several others are either unknown or can only be found in the EST database. We also are utilizing the NCI human microarray that contains either 2208 or 6500 human cDNAs to analyze RNA samples of human primary hepatocytes infected with HBx vs. control, HBV and HCV infected liver tissues vs. normal tissues, and tumor vs. non-tumorous tissues from HCC patients. Clustering algorithms were used to identify deregulation of distinctive gene expression profiles in these samples. Northern blotting analysis was used to verify the microarray data. We have identified multiple genes that are either up- or down-regulated in these samples. Further analysis of these genes will be useful for understanding the mechanism of HBV- and HCV-mediated oncogenesis.

Agency
National Institute of Health (NIH)
Institute
Division of Basic Sciences - NCI (NCI)
Type
Intramural Research (Z01)
Project #
1Z01BC010313-02
Application #
6433251
Study Section
(LHC)
Project Start
Project End
Budget Start
Budget End
Support Year
2
Fiscal Year
2000
Total Cost
Indirect Cost
Name
Basic Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Zheng, Hongping; Pomyen, Yotsawat; Hernandez, Maria Olga et al. (2018) Single-cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma. Hepatology 68:127-140
Sun, Yulin; Ji, Fubo; Kumar, Mia R et al. (2017) Transcriptome integration analysis in hepatocellular carcinoma reveals discordant intronic miRNA-host gene pairs in expression. Int J Biol Sci 13:1438-1449
Fako, Valerie; Wang, Xin Wei (2017) The status of transarterial chemoembolization treatment in the era of precision oncology. Hepat Oncol 4:55-63
Song, Chun-Qing; Li, Yingxiang; Mou, Haiwei et al. (2017) Genome-Wide CRISPR Screen Identifies Regulators of Mitogen-Activated Protein Kinase as Suppressors of Liver Tumors in Mice. Gastroenterology 152:1161-1173.e1
Ye, Qing-Hai; Zhu, Wen-Wei; Zhang, Ju-Bo et al. (2016) GOLM1 Modulates EGFR/RTK Cell-Surface Recycling to Drive Hepatocellular Carcinoma Metastasis. Cancer Cell 30:444-458
Roessler, Stephanie; Lin, Guoling; Forgues, Marshonna et al. (2015) Integrative genomic and transcriptomic characterization of matched primary and metastatic liver and colorectal carcinoma. Int J Biol Sci 11:88-98
Li, Lian; Liu, Yuexin; Guo, Yan et al. (2015) Regulatory MiR-148a-ACVR1/BMP circuit defines a cancer stem cell-like aggressive subtype of hepatocellular carcinoma. Hepatology 61:574-84
Ji, Junfang; Zheng, Xin; Forgues, Marshonna et al. (2015) Identification of microRNAs specific for epithelial cell adhesion molecule-positive tumor cells in hepatocellular carcinoma. Hepatology 62:829-40
Zhao, X; Parpart, S; Takai, A et al. (2015) Integrative genomics identifies YY1AP1 as an oncogenic driver in EpCAM(+) AFP(+) hepatocellular carcinoma. Oncogene 34:5095-104
Itzel, Timo; Scholz, Peter; Maass, Thorsten et al. (2015) Translating bioinformatics in oncology: guilt-by-profiling analysis and identification of KIF18B and CDCA3 as novel driver genes in carcinogenesis. Bioinformatics 31:216-24

Showing the most recent 10 out of 39 publications