Human liver cancer, with increasing occurrence in the United States, is the 5th most prevalent malignant disease in the world. It is the fourth leading cause of cancer mortality, which accounts for an estimated 1 million deaths annually. Hepatocellular carcinoma (HCC) is a major type of primary liver cancer. HCC is considered to be a terminally ill disease and currently, there is little progress toward the discovery of efficient therapies leading to regression. This is due largely to the lack of a method for early diagnosis and the lack of information on the phenotypic changes associated with the development of HCC. Our goals are to identify common gene clusters that are responsible for the genesis of HCC and to discover new genes critical for viral hepatitis-mediated HCC as well as genes necessary for metastasis. For example, by comparing liver samples from chronic liver disease patients with varying degrees of risk for developing hepatocellular carcinoma, we have identified unique fingerprints that may be useful in diagnosing patients with early onset of liver cancer. By comparing hepatocellular carcinoma with or without accompanying metastasis, we have identified a molecular signature that can be used to predict liver cancer patients with a potential to develop metastasis or recurrence. In addition, we are examining the role of the liver microenvironment in metastasis and recurrence by focusing particularly on the functions of immune cells and the inflammatory process in liver cancer progression. We have also identified several potential therapeutic targets that may be used to eliminate liver cancer cells or stop metastatic progression. Currently, we are exploring the roles of these genes in liver cancer initiation and metastasis. Our findings have been extremely fruitful as they may not only offer utilities to patient managements, but also challenge the current paradigm of tumor evolution. Clearly, gene expression profiling has expanded our knowledge of the global changes that occur in liver cancer, and has provided numerous insights into the molecular mechanisms of this disease. In addition, these studies will undoubtedly contribute to the establishment of novel markers with potential diagnostic and prognostic value, as well as potential therapeutic targets for direct clinical intervention of this disease.

Agency
National Institute of Health (NIH)
Institute
Division of Basic Sciences - NCI (NCI)
Type
Intramural Research (Z01)
Project #
1Z01BC010313-07
Application #
7291702
Study Section
(LHC)
Project Start
Project End
Budget Start
Budget End
Support Year
7
Fiscal Year
2005
Total Cost
Indirect Cost
Name
Basic Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Zheng, Hongping; Pomyen, Yotsawat; Hernandez, Maria Olga et al. (2018) Single-cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma. Hepatology 68:127-140
Sun, Yulin; Ji, Fubo; Kumar, Mia R et al. (2017) Transcriptome integration analysis in hepatocellular carcinoma reveals discordant intronic miRNA-host gene pairs in expression. Int J Biol Sci 13:1438-1449
Fako, Valerie; Wang, Xin Wei (2017) The status of transarterial chemoembolization treatment in the era of precision oncology. Hepat Oncol 4:55-63
Song, Chun-Qing; Li, Yingxiang; Mou, Haiwei et al. (2017) Genome-Wide CRISPR Screen Identifies Regulators of Mitogen-Activated Protein Kinase as Suppressors of Liver Tumors in Mice. Gastroenterology 152:1161-1173.e1
Ye, Qing-Hai; Zhu, Wen-Wei; Zhang, Ju-Bo et al. (2016) GOLM1 Modulates EGFR/RTK Cell-Surface Recycling to Drive Hepatocellular Carcinoma Metastasis. Cancer Cell 30:444-458
Roessler, Stephanie; Lin, Guoling; Forgues, Marshonna et al. (2015) Integrative genomic and transcriptomic characterization of matched primary and metastatic liver and colorectal carcinoma. Int J Biol Sci 11:88-98
Li, Lian; Liu, Yuexin; Guo, Yan et al. (2015) Regulatory MiR-148a-ACVR1/BMP circuit defines a cancer stem cell-like aggressive subtype of hepatocellular carcinoma. Hepatology 61:574-84
Ji, Junfang; Zheng, Xin; Forgues, Marshonna et al. (2015) Identification of microRNAs specific for epithelial cell adhesion molecule-positive tumor cells in hepatocellular carcinoma. Hepatology 62:829-40
Zhao, X; Parpart, S; Takai, A et al. (2015) Integrative genomics identifies YY1AP1 as an oncogenic driver in EpCAM(+) AFP(+) hepatocellular carcinoma. Oncogene 34:5095-104
Itzel, Timo; Scholz, Peter; Maass, Thorsten et al. (2015) Translating bioinformatics in oncology: guilt-by-profiling analysis and identification of KIF18B and CDCA3 as novel driver genes in carcinogenesis. Bioinformatics 31:216-24

Showing the most recent 10 out of 39 publications